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Abstract

The paper describes the results of experimental evaluation of capabilities of a pin-force

mathematical model for guided wave generation and sensing in elastic beam-like structures

using macro-fiber-composite (MFC) piezoelectric elements. It is found that the model provides

an adequate and convenient tool for fast parametric study of wave excitation and propagation

at a frequency range of practical interest. The model is tested against both MFC and laser-

vibrometer based signal measurements; the upper frequency limits of applicability for both

sensing methods are demonstrated.

INTRODUCTION

During the last decades the conception of structural health monitoring (SHM)

using a permanently attached distributed network of piezoelectric actuators and

sensors proposed in the pioneering work by Crawley and de Luis (1987) has been

gaining wide popularity. The design of such systems is a complicated engineering

problem that requires a thorough preliminary research work. This naturally gave

rise to the development and permanent advancement of mathematical models for

elastic waveguide structures (beams, plates, shells, etc.) with surface-bonded or

embedded piezoelectric patches, to be an essential part for the most of practically

employed constructions. The design studies assume intensive theoretical investiga-

tions on the base of these models.

The models developed to date can be roughly divided into two broad classes.

The first class is formed by so-called uncoupled models, originated from the classi-

cal pin-force approach (Crawley and de Luis, 1987). Their distinguishing feature is

the use of a predetermined form for the stresses generated by actuators, for which
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the changes of passive waveguide properties of the host structure introduced by

patches are usually neglected. Exhaustive reviews on these models can be found

in (Chaudhry and Rogers, 1994; Banks, Smith and Wang, 1995). The second class

contains more sophisticated coupled models, in which the stresses generated by

the actuators and sensors are more or less strictly found from the corresponding

boundary-value problems. Such models have been developed for the guided wave

excitation in elastic beams (Kusculuoglua, Fallahi and Royston, 2004), anti-plane

shear wave (Zhang, Boström and Niklasson, 2004) and Rayleigh wave (Boström and

Zhang, 2005; Wang and Huang, 2001; Kochetkov and Rogacheva, 2005) excitation

in an elastic half-space, and Lamb wave excitation in an elastic layer (Moulin, As-

saad and Delebarre, 2000; Glushkov et al., 2006, 2007) (see also review (Raghavan

and Cesnik, 2007)).

The coupled models take into account some effects neglected by the uncoupled

ones, for example, the effects of mutual interaction between the patches and the

waveguide, and so they have a much wider range of applicability. However, they

necessitate the use of direct numerical methods (such as FEM or BEM), which can-

not provide a direct insight into the wave structure of the solution, or complicated

mathematical techniques (integral equation based approach). To the contrary, the

uncoupled models are usually derived form simple mechanical considerations and

due to this fact they are invaluable for understanding the physics of wave phe-

nomena occurring in the corresponding electromechanical systems. Besides, they

frequently serve as a useful tool for the interpretation of the results predicted by

other more refined models; an example here is the investigation of the effect of

resonance energy outflow at certain patch-width-to-wavelength ratios undertaken

in our previous works (Glushkov et al., 2006, 2007).

The guided wave literature has many examples of the prediction of mode gen-

eration by different spatial force distributions (e.g., (Rose, 1999)). The pin-force

model is one of the earliest uncoupled models. It is based on the approximation

of stresses generated by piezoelectric actuators by a system of concentrated forces

applied at the points of patch edges. Such an approach has proved its adequacy
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in practical applications, it will suffice to mention a series of articles by Giurgiutiu

and his co-workers on structural health monitoring (e.g. (Giurgiutiu and Zagrai,

2000; Giurgiutiu, Bao and Zhao, 2003) and the references therein). The present

paper gives the results of experimental evaluation of the pin-force model capabil-

ity. We attempt to demonstrate its ability and restrictions for the guided wave

excitation and sensing in elastic beams with MFC piezoelectric elements basing on

the comparisons btween experimental and theoretical results. In these aspects it is

closely related to the recent papers by Raghavan and Cesnik (2005, 2007) devoted

to the modeling of piezoelectrically excited waves in thick elastic plates and hollow

cylinders.

MATHEMATICAL MODEL

The Modeling of an MFC Piezoelectric Actuator Attached to a Beam

Let us consider an elastic beam with an MFC piezoelectric element bonded to its

top surface as is shown in Figure 1. This figure also specifies the coordinate system

used and the corresponding dimensions: h and b are the thickness and width of

the beam, ap, bp and a0, b0 are the half-length and width of the element and its

piezoactive area, respectively, h0 is the element’s thickness. Note that the element’s

piezoactive area 2a0 × b0 is smaller than its actual bonding area 2ap × bp, and only

the former is significant for our goals. Also, only the excited wave field is of interest

for us here, so in order to simplify theoretical considerations the idealization of an

infinite beam is used.
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Figure 1: Elastic beam with piezoelectric element: a) side view; b) top view.

The fibers of the piezoelectric element are directed along its length, so being used
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as an actuator, it expands and contracts in longitudinal direction in response to the

driving voltage V (t) applied to its electrodes, generating tangential contact trac-

tion qx at the contact interface (due to the piezo-patch flexibility the normal con-

tact stress qz is assumed negligible). In the case of relatively slow (low-frequency)

change of the voltage, which is only of consideration in this paper, the patch action

is approximated by two shear concentrated forces applied at the edges of patch

piezoactive area

qx = τ0V (t) [−δ(x + a0) + δ(x − a0)] . (1)

Here τ0 = Y Ad33/(4+Y A/Y0A0)h0 is the force magnitude per unit voltage obtained

analytically using the approach described in (Chaudhry and Rogers, 1994), δ(x) is

the Dirac delta function; Y and Y0 are Young’s modules of the beam and element,

A = bh and A0 = b0h0 are their cross-section areas, d33 is the electromechanical

coupling constant of the element.

Within the assumptions of the Euler-Bernoulli beam theory the load generates

the elastic wave field u = (ux, uy, uz)
T with the components

ux(x, y, z, t) = u(x, t) − z
∂w(x, t)

∂x
,

uy(x, y, z, t) = 0,

uz(x, y, z, t) = w(x, t),

(2)

where u(x, t) and w(x, t) are the longitudinal and transverse displacements of the

beam middle line obeying the equations of motion

Y A
∂2u

∂x2
− ρA

∂2u

∂t2
+ qx = 0,

Y I
∂4w

∂x4
+ ρA

∂2w

∂t2
−

∂mx

∂x
= 0, mx =

h

2
qx;

(3)

ρ is the density of the beam and I = bh3/12 is the moment of inertia of its cross-

section.

The solution to equations (3) may be expressed in terms of steady-state harmonic
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oscillations:

u(x, t) =
1

π
Re

∞
∫

0

û(x, ω)V̂ (ω)e−iωtdω,

w(x, t) =
1

π
Re

∞
∫

0

ŵ(x, ω)V̂ (ω)e−iωtdω,

(4)

where

V̂ (ω) = Ft[V ] ≡
∞
∫

0

V (t)eiωtdt (5)

is frequency spectrum of the driving voltage V (t), ω = 2πf is angular frequency, f

is frequency, and Ft is the operator of Fourier transform from the time to frequency

domain. The frequency response functions û(x, ω) = Ft[u] and ŵ(x, ω) = Ft[w] are

partial solutions of the inhomogeneous ordinary differential equations

û
′′

+ ζ2û = −q̂x/(Y A)

ŵ(IV ) − ζ4
1 ŵ = q̂

′

x/(2Y I/h),

(6)

satisfying the radiation condition at infinity. Here q̂x = τ0[−δ(x + a0) + δ(x − a0)]

corresponds to the driving δ-pulse V (t) = δ(t); ζ1 = 4

√

ρω2A/Y I and ζ2 =
√

ρ/Y ω.

Those solutions are derived by the application of the direct and inverse Fourier

transforms Fx and F−1
x with respect to the space variable x. The transformed

equations (6) take a simple algebraic form:

(α2 − ζ2
2)U(α) = Q2(α),

(α4 − ζ4
1)W (α) = Q1(α),

(7)

where

U(α) = Fx[û] ≡
∞
∫

−∞

û(x)eiαxdx and W (α) = Fx[ŵ],

Q1(α) =
−iαh

2Y I
Qx(α), Q2(α) =

1

Y A
Qx(α), Qx(α) = Fx[q̂x] = 2iτ0 sin αa0.

Then from equations (7)

û(x, ω) = F (−1)
x [U ] ≡

1

2π

∫

Γ

Q2(α)

α2 − ζ2
2

e−iαxdα,

ŵ(x, ω) = F−1
x [W ] ≡

1

2π

∫

Γ

Q1(α)

α4 − ζ4
1

e−iαxdα.
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The integration contour Γ goes along the real axis Reα deviating from it for bypass-

ing the real poles ±ζ1 and ±ζ2 of the integrands. In accordance with the radiation

condition the negative and positive poles are rounded from above and from below,

respectively. Hence, the contour closing into the low half-plane Im α < 0 for x > a0

and into the upper half-plane Im α > 0 for x < −a0 and the use of the residual

Cauchy theorem leads to the explicit analytical representations in terms of residuals

from the poles ζ2 or −ζ2 for û and the poles ζ1, iζ1 or −ζ1,−iζ1 for ŵ:

û(x) = a±2 e±iζ2x, a±2 = ±
τ0

Y A

sin ζ2a0

ζ2
,

ŵ(x) = a±1 e±iζ1x + b±1 e∓ζ1x, a±1 = −
τ0

Y I

h

2

sin ζ1a0

2iζ2
1

, b±1 =
τ0

Y I

h

2

sh ζ1a0

2ζ2
1

.

(8)

The upper and lower signs are taken for x > a0 and x < −a0, respectively. The

poles ζ1 and ζ2 are wave numbers of bending and longitudinal traveling waves

propagating along the beam at a given frequency ω.

The preceding exposition dealt only with the wave field generated by a single

actuator. In the case of multiple actuators the generated wave field is obtained

as the superposition u =
∑

um of the wave fields um generated by each of them

separately.

The Response of an MFC Piezoelectric Sensor

The piezoelectric element considered above can be also used as a sensor. Being

subjected to a deformation along the direction of its fibers, it accumulates the

charge Q. Under the assumption of infinitely compliant sensor which does not

significantly change the beam waveguide properties, its output voltage is obtained

as

Q(t) = d33Y0

∫

S

εx(x, y, h/2, t)dS, εx(x, y, z, t) =
∂

∂x
ux(x, y, z, t), (9)

where the integral is taken over the surface of the sensor’s active area S : |x| ≤

a0, |y| ≤ b0/2 (Raghavan and Cesnik, 2005; Sirohi and Chopra, 2001). The substi-

tution of ux in the form (2) and subsequent integration yields

Vs(t) = Q(t)/C = s0∆ ux = s0

[

∆ u −
h

2
∆ w

′

x

]

, (10)
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where ∆ u = u(a0, t)−u(−a0, t), ∆ w
′

x =
∂w

∂x
(a0, t) −

∂w

∂x
(−a0, t) and s0 = d33Y0b0/C,

C is the element’s capacitance. Therefore, the sensor’s response is proportional to

the difference of the longitudinal displacements of its edges. For the sensor placed

on the bottom surface its response has the same form as (10), the only difference

is in the sign of the second item. Hence, using a symmetric pair of sensors placed

on both beam surfaces, one can distinguish between the longitudinal and bending

waves: for the former the both sensors give identical readings, while for the latter

they are of opposite signs.

GENERATED WAVE FIELD

The wave field excited by an actuator is given by (4) and strongly depends on the

driving electric voltage. In the experiments we have used n-cycled sinusoidal tone

bursts of the form

V (t) =















A sin 2πt/T , 0 ≤ t ≤ nT

0, t < 0 or t > nT
,

V̂ (ω) = −A(1 − eiωnT )ωc/ (ω2 − ω2
c ),

(11)

where ωc = 2π/T is the central circular frequency and A is the amplitude. At that,

as the number of cycles n increases, the frequency spectra V̂ (ω) become more and

more concentrated near ωc, so that a neighborhood of this point gives the main

contribution to the integrals (4). Therefore, the main wave packets propagate from

the source to infinity with the phase and group velocities

cp,m = ω/ζm|ω=ωc
, cg,m = dω/dζm|ω=ωc

; (12)

m = 1 and m = 2 for the bending wave and the longitudinal wave, respectively.

Besides the main wave packets there may exist additional bending wave signals

propagating with different (due to dispersion) group velocities (Figures 2, 3).

Although the calculations above are well known, it is still interesting to see how

the corresponding wave phenomena manifest themselves in the particular situation

considered. The dimensions and material properties for the numerical examples
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Figure 2: The dispersion curves of the beam: a) phase velocities; b) group velocities.
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Figure 3: Beam snapshots during wave propagation.
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are taken in compliance with the test system used:

h = 3 mm, b = 25 mm, Y = 210 GPa, ρ = 7850 kg/m3, ν = 0.3,

h0 = 0.3 mm, b0 = 8 mm, a0 = 42.5 mm, Y0 = 30 GPa, d33 = 400 pC/N.

Figure 2 shows the dispersion curves of the beam (vs =
√

Y/ρ is the shear-wave

velocity). As it is seen, the phase and group velocities of the longitudinal wave

(dashed lines) do not depend on frequency and coincide, i.e. the corresponding

wave packet propagates without changing its form. To the contrary, the bending

wave (solid lines) is strongly dispersive.

Figure 3 shows theoretical snapshots of the beam in various moments of time

corresponding to the excitation of the actuator using one-cycled sinusoidal tone

burst with the central frequency fc = 10 kHz; the displacements are scaled in

order to make both the longitudinal and bending waves visible. The first frame

corresponds to the very beginning of excitation. On the next two, one can clearly

see two propagating longitudinal waves that goes fast from the patch edges, keeping

the same distance between the maximal amplitudes (dark thickenings in the frames)

which is equal to the patch length 2a0. The other frames show a slow, spring-

like pattern of dispersive wave propagation, corresponding to the bending wave

transition. The main packet related to the central frequency fc goes first, while a

slower packet, exhibiting oscillation with a lower frequency associated with a local

maximum of integrand (4), separates from it gradually.

EXPERIMENTAL RESULTS AND DISCUSSION

Experimental Setup

The experimental setup is shown in Figure 4. The test rig consists of a steel

beam (structural steel ST-37) with three surface-bonded MFC piezoelectric ele-

ments (M8507P1 from Smart Materials Corp.), waveform generator (33250A from

Agilent Technologies), two power amplifiers (type 2713 from Bruel & Kjaer), laser

vibrometer sensing instrument (sensor head OFV-505 and decoder OFV-5000 from
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Figure 4: Experimental setup.
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Figure 5: Scheme of measurements.
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Polytec GmbH), oscilloscope (Tektronix TDS3034B) and computer, which is used

for data acquisition and post-processing. In order to minimize the reflection effects

the beam is damped at its ends.

Figure 5 shows the principal scheme of the setup. One of the piezoelectric

elements on the top side of the beam is used as actuator, while the other operates

as sensor. There is also another sensor on the bottom side, which is located at

the same position; such a symmetrical layout allows to distinguish between the

longitudinal and bending traveling waves. In order to avoid electrical interference

between the actuator and sensors, the beam is grounded. The laser vibrometer is

used to measure the out-of-plane velocities at the points A, B, C and D on the top

beam surface.

The actuator is driven as usual by a waveform generator via an amplifier. The

measurements are triggered by the waveform generator. The excitation signal,

voltages of the sensors and amplified signal of the laser vibrometer are recorded on

the four oscilloscope channels. From the oscilloscope the data is retrieved to the

computer via local area network (LAN) for further post-processing. At this step,

the results obtained directly from the measuring instruments are filtered in order

to eliminate the influence of beam oscillating eigenmodes and electrical noise. A

Butterworth band-pass filter with the corner frequencies approximately equal to

3 kHz and 300 kHz for the 10 kHz measurement is used for this goal. At that, the

filter is applied two times, forward and backward, canceling the time shift caused

by its phase response.

Results and Discussion

For the first series of experiments, we measured the out-of-plane velocities at the

points A, B, and C located on the top surface of the beam at the distances d = 20,

50 and 70 mm from the edge of the actuator. Two-cycled sinusoidal tone bursts

with the central frequencies fc = 1 kHz and fc = 10 kHz were used for excitation.
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The predicted vibrometer’s readings are calculated from the equations (2) – (4):

u̇z(a0 + d, 0, h/2, t) = ẇ(a0 + d, t) =
1

π
Re

∞
∫

0

(−iω)ŵ(a0 + d, ω)V̂ (ω)e−iωtdω. (13)

The comparisons of the experimental results against theoretical predictions are

shown in Figure 6. As one can see, in all cases the agreement is very good. However,

the laser vibrometer can only register the bending wave, while the longitudinal one

remains invisible.
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Figure 6: The out-of-plane velocities at the points A, B and C, measured by vibrometer (solid lines)

and obtained theoretically (dashed lines): a-c) fc = 1 kHz; d-f) fc = 10 kHz.

The second series of the experiments was conducted using both the sensors and

the laser vibrometer. The actuator was excited using one-cycled tone bursts, and

the velocity was measured at the point D immediately behind the top sensor. The

predicted sensor’s readings are obtained using formula (10). Both the measured

and the calculated results are plotted in Figure 7. This time, the transmission of

the longitudinal wave is clearly registered. At that, as in the previous example, the

experimental and theoretical results practically coincide. The extraneous compo-

nents in subplots d) and e) at t ≈ 1.3 ms, not coinciding with the theoretical curves,

result from the longitudinal wave reflection from the beam edge, which occurs in
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spite of beam damping. It is also interesting to note that although the theoretical

results of the laser vibrometer are calculated without taking into account the pres-

ence of sensors, they still agree well with the experimental ones, hence the actuator

and sensors introduce a negligible change to the passive waveguide properties of

the beam.

In view of good agreement between the theory and experiments obtained above,

the model described is an adequate and convenient tool for the numerical simula-

tions of beam-like waveguide structures with piezoelectric sensors and actuators.

At the same time, it has restrictions on the range of applicability. In order to see

this in practice, the third series of experiments was conducted for relatively high

central frequencies of excitation: fc = 50 kHz and fc = 100 kHz. The corresponding

comparisons are shown in Figure 8. In both cases, there is no coincidence between

the theoretical and experimental results: the real arrival time of the longitudi-

nal wave is greater than the theoretically predicted one, though the forms of the

readings conform; for the bending wave there is no coincidence at all.

Table 1: Specific values for the phase velocities cm and wavelengths λm of the bending (m = 1) and

longitudinal (m = 2) waves in the experiments conducted.

fc, kHz c1, m/s λ1, m λ1/h c2, m/s λ2, m λ2/h

1 172 0.172 57.37 5441 5.441 1813.67

10 544 0.054 18.13 5441 0.5441 181.37

50 1215 0.024 8.1 5441 0.1088 36.27

100 1720 0.017 5.73 5441 0.0544 1.81

The main reason of the restriction indicated is well known. As the frequency f

increases, the dispersion curves given by the Euler-Bernoulli beam theory deviate

from the ones given by the exact theory of elasticity. Hence, the beam solution is

valid if the central frequency fc of the excitation signal V (t) lies in the low frequency

range where the dispersive curves of both theories differ insignificantly. In other

words, the characteristic length of waves propagating in the beam should be much

longer than its thickness. A commonly used estimation is λ1/h > 10, which is in

agreement with the specific values for the experiments given in Table 1. Another
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possible reason of the discrepancy at high frequencies is that the approximation of

a real stress distribution under the actuator by a system of concentrated forces also

works well only for relatively low excitation frequencies.

CONCLUDING REMARKS

The limits of pin-force modeling of guided wave generation and sensing in an

elastic beam using MFC piezoelectric elements have been considered. The results

predicted by a simple mathematical model based on the Euler-Bernoulli beam the-

ory with pin-force approximation of the stresses generated by piezoelectric actua-

tors have been compared against the experimental ones. For low frequencies the

agreement is good and this shows that the model provides an adequate and conve-

nient tool for fast parametric study of waveguide structures with MFC piezoelectric

actuators and sensors. At higher frequencies, the applicability of the model is re-

stricted: in accordance with the experiments conducted, it gives reliable results for

λ1/h > 18 and does not work when λ1/h < 8. The simulation at the latter fre-

quencies requires more refined mathematical models for both waveguide properties

and contact stress distributions.
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