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INTRODUCTION

At present, media with a continuous dependence of
the elastic properties on the depth are usually called
functionally graded materials (FGMs). The necessity
of solving wave problems for FGMs occurs in hydro�,
seismo�, and physical acoustics, as well as in connec�
tion with the appearance of new composite materials,
film microelectronic piezoelectric structures, and
materials with protective micro� and nanocoatings.
The elastic properties of such materials gradually vary
due to the technology of their fabrication (sputtering,
sintering) or diffusion processes in the interlayer glu�
ing of dissimilar�module layers. In some cases, it is a
special task to reduce the contrast of the elastic prop�
erties of a composite (for example, metal ceramics) in
order to reduce internal stresses occurring under tem�
perature and force loads. Materials with strengthening
gradient coatings are widely used; accordingly, there is
an increasing need to develop reliable nondestructive
wave methods for their control.

To determine the elastic properties of FGMs,
indentation or ultrasonic probing data are used. The
theoretical analysis of indentation results is based on
solving the corresponding contact problems, while
remote ultrasonic control is based on analysis of sur�
face acoustic waves (SAWs). The purpose of this work
is to simulate SAWs excited by a given surface load in
open FGM waveguides.

The finite element method (FEM) and finite dif�
ference method (FDM) are universal approaches to
solving the initial�boundary problems for an inhomo�
geneous medium. However, in the case of wave prob�
lems, this approach has known drawbacks. First, this is
the sharp increase of computing expences when the
relative size of the considered region increases, which
strongly hampers simulation of remote probing of
lengthy structures. Second, due to absence of infor�
mation on the contribution of each of the excited
modes to the total wave field, physical clarity of the
results is not always ensured.

Normal mode characteristics can be obtained by
the modal analysis technique by searching for spectral
points and corresponding eigensolutions (eigen�
modes) of the homogeneous boundary value problems
for the considered waveguides. However, the modal
analysis does not give information on the relationship
between the amplitudes of excited waves, which
depends on the source parameters. This necessitates
developing hybrid schemes, within which the
unknown amplitude coefficients are determined by
coupling normal mode expansions with the
FEM/FDM near�field results [1].

An integral approach is more natural, not requiring
such a joining. Within this approach, the total wave
field (displacement field ) is represented as a convo�
lution of the Green’s matrix of the considered
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waveguide k with the surface load vector q simulating
the source action [2]:

(1)

Here and below, the spatial points  are con�
sidered as given in the coordinate system with the ori�
gin O in the load area Ω; the xOy plane coincides with
the day surface of the medium, and the Oz axis is its
outward normal (Fig. 1).

The equations and boundary  conditions of the cor�
responding boundary value problems for stratified
media whose properties are independent of the hori�
zontal coordinates x, y, including those for the consid�
ered FGM, permits the application of Fourier trans�
formation  over these coordinates. This allows one
to write the Green’s matrix as an inverse Fourier trans�
formation:

(2)

The wave field representation (1) is reduced to the
inverse transformation from the product of the Fourier
symbols of the Green’s matrix K  and load

  The replacement of the
contour integrals by the sum of the residues of the ele�
ments of the matrix  from the poles  gives
the expansion of  in terms of normal modes. The
residues, being functions of z, give the same depth
dependences of the SAW components as does
the modal analysis, while the information on the
source automatically enters the amplitude coefficients
via the  values at the poles  Construction of the

matrix and the search for the real and close�to�real
axis poles of its element is of key importance for
implementing this approach.

In the 1970s–1980s, the integral approach was per�
formed for multilayer and gradient media for which it
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is difficult or impossible to write the matrix K explic�
itly. Methods for solving such problems arising in geo�
physics and seismoacoustics were actively being devel�
oped at that time at the Research Institute for
Mechanics and Applied Mathematics of Rostov State
University [3–6]. Providing high speed and numerical
stability of algorithms for calculating the K matrix for
the entire range of input parameters is of special
importance for their implementation. In particular,
there have been proposed and implemented the algo�
rithms for Green’s matrix calculations, the efficiency
of which was ensured by taking the exponential com�
ponents out of the computing process [7]. The algo�
rithms developing this approach are used in this work.

The calculation of the K matrix for FGM is gener�
ally more costly than for a medium with a piecewise�
constant depth dependence of the properties. The
approach based on the replacement of FGMs by a
multilayer half�space dates back to the first matrix
Thompson–Haskell–Petrashen’ algorithms [8–10],
but its appropriateness remains open to question. Its
ambiguity is indicated, for example, when the struc�
tures of the contact problem solutions obtained for
gradient and steplike elastic bases are compared [5].
The behavior of the Fourier symbol of the kernel of the
integral equation at infinity in these two cases is qual�
itatively different. In certain situations this leads to an
invalid interpretation of indentation results for sam�
ples with FGM coatings.

On the other hand, there are no examples where,
with a sufficient number of partitions, the steplike
approximation would lead to qualitatively invalid wave
characteristics recorded on the surface of FGM
waveguides. On the contrary, the known numerical
results (see, e.g., [11]) allow one to suppose that it is
possible to use a low�cost multilayer model for simu�
lating SAWs in FGM waveguides. One of the aims of
this work is to check this suggestion, based on a sys�
tematic comparison of the results obtained by means
of the algorithms elaborated for fast calculation of
Green’s matrices for elastic half�spaces with gradient
and piecewise�constant depth dependences. The for�
mulation and description of the general scheme of the
solution to the corresponding problems and the algo�
rithms used for K matrix calculation are preliminarily
given. Then, for a series of typical dependences occur�
ring in materials with coatings and layered composites,
numerical results are given and discussed that show the
dependence of the discrepancy on the number of par�
titions when the FGM model is replaced with the mul�
tilayered one. Of independent interest are the results
showing the effect of inhomogeneity on the dispersion
and amplitude–frequency characteristics of SAWs
excited by a given surface source, as well as typical fea�
tures of the motion of the K matrix poles (spectral
points determining the normal modes) in the complex
plane.

–H
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Fig. 1. Functionally graded elastic half�space with surface
load.
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INTEGRAL AND ASYMPTOTIC 
REPRESENTATIONS OF THE WAVE FIELD

An elastic isotropic half�space occupying the vol�
ume    in the Cartesian coor�
dinate system is considered. The elastic modules λ and
μ and the density ρ continuously vary with the depth z,
reaching constant values at (Figs. 1 and 2).
Such a dependence simulates materials with a func�
tionally graded coating of thickness H.

The steady�state time�harmonic oscillation of the

medium  with the circular frequency ω are

excited by the load  applied to the stress�free sur�
face z = 0 in a restricted area Ω:

(3)

 =  =  is the complex amplitude
of a stress vector on a horizontal surface. At infinity

 and r , the radiation condi�
tions resulting from the principle of limiting absorp�
tion hold [2]. Here and below, the time�harmonic fac�

tor  is omitted, and in addition to conventional
notations, digital indexing of the vector and matrix
components is used, which is necessary for compact
tensor records with summation over identical indices.
The vector–column components are given in braces.

The displacement vector  =  = 
obeys the equations of motion

(4)

in which the derivatives of the components  enter via
the stress tensor elements,

(5)

The substitution of Eq. (5) into Eq. (4) leads to the sys�
tem of equations

(6)

which differs from the Lamé equations for a homoge�
neous medium by the additional term D, containing
derivatives of the elastic modules λ(z) and μ(z)
depending on z = x3:

In the case of piecewise�continuous dependence of
λ and μ on z with the points of discontinuity z = zm,
Eqs. (6) are determined in the open regions (sublayers)
Sm:  (   ),
and the additional conditions of the displacement and
stress continuity are assigned on their boundaries:

(7)

Square brackets denote the jumps of the correspond�
ing functions at the boundaries z = zm:  =

 For a layered�homogeneous
medium, Eqs. (6) degenerate into the classical Lamé
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equations with  and constant coefficients 
 and  within every sublayer 

Remark. In some works (see, e.g., [6, 11]), the
Green’s matrix for an FGM is calculated by numeri�
cally solving the initial first�order Eqs. (4) and (5) in
the Fourier transform  domain, not reducing them to
Eq. (6). It has been stated that, thus, it is possible to
avoid differentiation of the elastic moduli λ, μ and dis�
card problems resulting from the presence of disconti�
nuity points zm. However, this difference is apparent:
with any method for numerically solving the arising
systems of ordinary differential equations (ODEs), the
finite�difference schemes are equivalent, since differ�
entiation of λ and μ over z is implicitly present in rela�
tions (4) and (5) and the discontinuity points in both
cases are passed using the coupling conditions (7).

The columns  of the matrix  in
Eq. (1) are the displacement vectors caused in the
considered medium by the point loads,

(8)

applied to its surfaces along the coordinate axes 
δ is the Dirac delta function and ij are the coordinate
unit vectors. In conventional notations [2, 12], the
Fourier symbol  is expressed in terms of
five functions M, N, P, R, and S, depending only on

 and z:

. (9)
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Fig. 2. Four types of gradient coatings.
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the matrix  connecting the Fourier
symbols of the load vectors  and of the
displacements   has the
form

(10)

Its structure indicates that the displacements ur and uz

in the radial plane  and the torsion oscillation uϕ

are caused independently by the stress components qr,
qz, and qϕ. In outward appearance, the same structure
is obtained for the matrix K in the plane case, when 
and  do not depend on the transverse coordinate y. In
such a case, the integral in Eq. (2) is a single one,

  and the function  in the 
component is in charge of the antiplane oscillations
generated by the load 

The change of variables to polar coordinates allows
one to reduce Eq. (2) to a single integral over α and, in
turn, to a series in terms of residues in the Nr real and
infinite number of complex poles  of these functions
(contribution of the discrete spectrum) plus the
remaining integrals over the banks of cuts (contribu�
tion of the continuous spectrum), giving the term kb

[12, 15]:

, (11)

where  are Hankel functions,  if  is an
irregular real pole, giving the backward wave; for the
rest of the poles, 

Due to the asymptotic behavior of the Hankel
functions for large arguments, the terms  corre�
sponding to the complex  (inhomogeneous waves)
exponentially decay as r  increases, while, taking into
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account Eq. (1), the real poles give the far�field
asymptotics [12]:

(12)

The terms of Eq. (12) describe the traveling waves of
the Rayleigh–Lamb–Stoneley type (for the poles  of
functions , and ) and antiplane Love waves
(for the poles of functions ) propagating in the FGM
half�space from the area of the application of the
load q with the phase and group velocities 
and , respectively. The numerical exam�
ples below are given with respect to the inverce  to 

slownesses  which are poles in the complex
plane .

The main contribution to the asymptotics of the
entering into  integrals over the banks of cuts is
given by the real branch points  and

, which are the wavenumbers of body waves
propagating in the lower (homogeneous) half�space

 with the phase velocities  and  [12].

ALGORITHMS FOR CALCULATING MATRIX K

The Fourier transformation �xy reduces the
boundary value problem for Eqs. (3), (6), and (7) to
the problem for a system of ODEs over z with respect
to the Fourier symbol . Then, by means of
the substitution

it is reduced to three independent problems with
respect to the vector functions  = 
and  =  Specifically, these are vector
functions  =   =  and  =

 Their components are the functions entering
the matrix K of form (9) and their z derivatives. They
satisfy the ODE systems [2, 12]

(13)

with the boundary condition on the surface
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and the continuity conditions at the interfaces
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The nonzero elements of the matrices A and B in
Eqs. (13) are

The matrices and vectors in Eqs. (14) and (15) are

With a steplike depth dependence of the medium
properties, the general solution to Eqs. (13) within
every homogeneous sublayer Sm can be written in the
explicit form

(16)

Here,  and  are the eigenvectors of the matrices of
the systems corresponding to the eigenvalues 
and 

where  represents the fourth�order (for ) or sec�
ond�order (for ) unity matrices,

The unknown coefficients  and  assembled in the

vectors  =  and  =  are deter�
mined from the linear algebraic systems arising upon
substitution of Eq. (16) into boundary conditions (14)
and (15):

(17)

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

'

'

' '

'

2
12 34 12 41

2 2
21 42 2

2 2
22 23 43

24 44

2 2
21 22

1 2

2 2

2

2 2

a a b a

a a

a a a

a a

b b

= = = = α λ λ + μ

⎡ ⎤= α λ + μ − ρω μ = α λ + μ λ + μ⎣ ⎦

= = −μ μ = α μ − ρω λ + μ

= − λ + μ μ = − λ + μ λ + μ

= α μ − ρω μ = μ μ

, ,

,

,

.

,,

,

,

,

( )

2

2 2

2
1 2

0 0 2 1 0
,

00 0

1 0 0 0
1 0

0 0 1 0 0 ,
0 1

T H
ii i

G i

T

⎛ ⎞−λα λ + μ ⎛ ⎞= , =⎜ ⎟ ⎜ ⎟− μ⎝ ⎠− μα − μα⎝ ⎠
⎛ ⎞

⎛ ⎞ ⎛ ⎞⎜ ⎟= , = ,− μα = , = .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

l e e

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2 2 1

2
2

2

1

1 2
1 2

1 2

j m j m

m m

z z z zj j
m j m j

j

z z z z
m m

m

t e t e

s e s e

z S m M

+

+

σ − −σ −+

+

=

σ − −σ −

⎡ ⎤= +⎣ ⎦

= + ,

∈ , = , ,..., .

∑Y m m

X n n

,

im ln

i jγ = ±σ

:2lδ = ±σ

( ) ( )

( ) ( )

det

det

0 0 1 4

0 0 1 2
i i i

l l l

A I A I i

B I B I l

− γ = , − γ = , = ,...,

− δ = , − δ = , = ,

m

n

,

,

I jm

ln

{ }
{ }
{ } { }

( )

Re Im

2

2 2 2

1 2 2 2

2 1 2 2 2

2 2

2 2 2 2
1 2

1 1 3

2 4

1 1

0 0 1 2

2

i i i i

i i i i

j j j j

j j j j

i

i

j

+

= , γ , γ , γ , = ,

= γ , γ ,α ,α γ , = ,

= ,σ , = ,−σ

γ = σ , γ = −σ , δ = σ , δ = −σ

σ = α − κ , σ ≥ , σ ≤ , = ,

κ = ρω λ + μ , κ = ρω μ.

m

m

n n

,

,

,

,

,

( )i
mt

( )l
ms

mt ( ) ( ){ }1 4
m mt t,..., ms ( ) ( ){ }1 2

m ms s,

{ } { }

{ } { }
1 2 1 2

0 0 1 2 1 0 0

l

M M

l l

A B

l

= , =

= , , ..., , = , , ...,

= , , ..., , = , , = , , ..., .

t f s g

t t t t s s s s

f e g

,

,

The matrices A and B of Eqs. (17) have a block struc�
ture, allowing one to organize their solution by a
matrix sweep method. The peculiarities of its imple�
mentation, providing numerical stability, are discussed
further by using the first of these systems as an exam�
ple.

By means of the fourth�order matrices,

the vector  can be written as follows:

The shift of parameters in the exponents  is chosen
so that the first two of them ( ) become unity at
the upper layer boundary  and the second pair
( ) at the lower one 

(18)

In the lower half�space , it is necessary to
exclude exponents  and  not satisfying the
radiation conditions. To this end, it is sufficient to take
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requires considerably less expenditure than solving
Eq. (17) as a whole, and, therefore, it is used in differ�
ent modifications by many authors. However, in prac�
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multipliers forming nondegenerating diagonal blocks
in the matrix A. Therefore, in order to elaborate a
recurrent matrix algorithm not requiring the inversion
of ill�conditioned matrices, the matrix A should be

split into fourth�order blocks  The
diagonal blocks  do not contain exponents, and,
due to the linear independence of the eigenvectors 
forming them, are nondegenerate matrices.

In this notation, relations (19) are

(22)

They allow one to perform a numerically stable matrix
sweep according to the following scheme:

(23)

It should be noted that analogous methods of wave
field analysis based on the explicit integral and asymp�
totic representations of form (11) and (12) and on the
fast algorithms for calculating matrix  have also been
elaborated and computer�implemented for layered
porous water�saturated media [14] and for composite
materials with arbitrarily anisotropic layers [15].

In the case of FGMs, the general solution to
Eqs. (13) can be written in the explicit form only for
some particular dependences of properties on —for
example, for exponential ones. Therefore, transfer of
the boundary conditions from one boundary of every
layer  to another, which is necessary for execution of
the matrix sweep algorithm, is generally possible only
via numerical solution of the corresponding Cauchy
problems for the ODE systems with variable coeffi�
cients. Standard finite�difference discretization (e.g.,
the Runge–Kutta method) leads to a numerically
unstable algorithm due to the fact that, in the vicinity
of the internal points , the sought solution 
implicitly contains exponential components ei(z), giv�
ing a fast increase, degeneration to zero, or strong
oscillation.

These difficulties are overcome by means of the
modulating function method [7], within which the
solution in each sublayer  is sought in the form

(24)
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with the unknown modulating functions  The
latter are determined from the Cauchy problems for
the systems

(25)

with the initial conditions  taken at the
upper (  ) or lower (  )
boundaries of the sublayer. The eigenvalues  are
taken at the same initial points . At these points, the
right�hand side of Eqs. (25) is zero, slowly deviating
from it in the course of numerical integration over the
length  (the zones of drastic change in
gradient properties should be divided into sublayers 
with a sufficiently small step ). The vectors 
also change smoothly, and so the solution of ODE is
low�cost and numerically stable. The algorithm for
determining the unknown coefficients  remains the
same, with the obvious modification of the form of the

matrices  and  which are now expressed not in
terms of vectors  but in terms of  taken at
boundary points  and 

COMPARISON OF MULTILAYER 
AND GRADIENT MODELS

The reliability of the results was controlled by
numerically checking if the obtained solutions 
satisfy the equations, boundary conditions, and the
energy conservation law. In addition, they were com�
pared with the results of other authors: in particular,
the same characteristics were obtained for media with
an internal gradient layer like those given in mono�
graph [6].

Four types of gradient coatings were chosen for
numerical analysis: I, soft; II, hard; III, soft with a
hard interface layer; and IV, hard with a soft interface
(Fig. 2). Each of the coatings consists of homogeneous
and gradient substrata, the latter of thickness . The
continuous depth dependence of properties can be
given by any smooth functions relating the values of

the body wave velocities   and

 and density  of the neighboring homoge�
neous substrata. Cubic splines ensuring the continuity
of functions and their first derivatives were used in the
calculations. At , the gradient model degener�
ates into a two�layer (for coatings I and II) or three�
layer (for III and IV) half�space with the constant val�
ues   and  within each layer; at , the
coating is gradient over the total thickness. The con�
trast of the properties of the coatings I and II in com�
parison with the substrate is characterized by the ratios

 , and   where the
index 1 denotes values at  and the index 2 at
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From here on, all results are given in dimensionless
form, in which the linear sizes are normalized to the
thickness  and the velocities and density to  and 
for the hard material. In these units, the dimensionless
circular frequency  where  is dimen�
sional frequency. For definiteness, in the numerical
examples, the dimensionless parameters 

, and ρ = 0.682 are set for the soft material,
while; are normalized to the  , and
ρ = 1 are for the hard one. With the velocity and den�
sity units  6349 m/s and  kg/m3, these
parameters correspond to the properties of aluminum
(Al) and aluminium oxide (Al2O3). Frequencies of up
to 300 kHz correspond to the dimensionless range

 for the thickness of the coating H = 1 mm.
When the characteristic velocities and lengths change,
the dimensional frequency range is changed as well;
i.e., the results are applicable not only to micro�, but
also to the corresponding macro� or nanostructures.

For comparison, M�layer media resulted from the
approximation of continuous dependences by steplike
functions with a uniform step were also considered.
The difference between the obtained results was esti�
mated by means of the relative integral discrepancy

H sv ρ

2 ,sfHω = π v f

0 955,p = .v

0 466s = .v

1 691,p = .v 1s =v

0 =v 0 3960ρ =

0 20< ω <

where  and  are the Fourier symbols of the dis�
placements in the gradient and the corresponding
M�layer half�space and  is the Euclidean norm of
the vector. The discrepancies for the dispersion curves

 and the mode amplitudes  were analyzed as well.

Figures 3a and 3b give dependences  for the
discrepancies  as well as  for the sum of the ampli�
tudes of all normal modes  and  for the maximum
relative error of the slowness  at  and ω = 20
(medium I). Here, just as in all the other examples
considered, the discrepancies monotonically tend to
zero as  increases; i.e., no cases were found for
which the SAW characteristics in FGM could not be
approximated with the required accuracy  at a suffi�
ciently large number of layers. The difference from the
conclusions drawn in [5] is explained by the fact that
the SAW characteristics are determined by the residues
from limited  while the indentation results are
affected by the second expansion term of the contact
problem solution which is dependent on the second
term of the  behavior at  that, on the con�
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Fig. 3. Dependence of the discrepancy δ on the number of the layers M upon approximation of the continuous dependence by
the steplike (a and b), as well as the number of the layers M required for achieving the given accuracy ε= 0.01 (c) and computing
costs (d) on the contrast of the elastic properties γ.
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trary, is qualitatively different for the gradient and
multilayer media.

The number of layers  required for the achieve�
ment of accuracy  versus the contrast of
properties of the coatings I and II at   is
shown in Fig. 3c. The results are given versus  At

  varies, while ; at , on the contrary,
, while  decreases with the increase of  The

values of  and  at  and vρ1  and   at  vary
similarly, so, at  and ,
respectively, the coatings I and II with the parameters
specified above occur. At , the medium degener�
ates into a homogeneous half�space with the hard
material properties.

The sharp increase in  at  indicates that in
this case the approximation of the soft coating I by a
multilayer package requires a much larger number of
layer partitions than hard coating II with the same
contrast |log  The computing expenditures required
for achieving the given accuracy  within the
gradient (solid line) and multilayer (dotted line) mod�
els is shown in Fig. 3d as a function of γ; the calcula�
tion time at the ordinate axis is normalized to the time
of solving the problem for 100 layers. As expected, the
multilayer model as a whole is less time�consuming.
However, at a high contrast of the soft coating ( ),
the number of layers required for good approximation
and the computing expenditure sharply increase, while
the expenditure curve for the gradient model remains
gently sloping and its use becomes more advantageous
for γ lower than a certain threshold value γ*. The high
efficiency of the gradient model is explained by the
fact that the derivatives  and  entering the right�
hand part of Eqs. (25) provide better approximation of
a high gradient ODE solution than its approximation
by a set of solutions for homogeneous layers, in which

On the other hand, in the course of the compari�
sons it turned out that even the initial two� and three�
layer models without diffusion interlayers ( )
already give an idea about the effect of the correspond�
ing gradient coating on the SAW characteristics. The
transformation of the SAW characteristics upon the
gradient zone variation is discussed in detail in the fol�
lowing section.

SURFACE WAVES

The presence of the coating leads to a change in the
fundamental Rayleigh mode characteristics and to the
appearance of additional traveling waves. Some gen�
eral regularities are maintained for any type of inho�
mogeneity. At low frequencies ( ), when the rel�
ative thickness  (  is the length of
the S�wave in the hard material), the effect of the coat�
ing reduces to zero and a single Rayleigh wave propa�

M
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gates in the medium with the same velocity  as in
the homogeneous half�space with the properties of the
substrate. Therefore, in all plots depicting the slowness

 versus , the first branch of the dispersion curves
originates at  from the point  (for the
hard substrate ; for the soft one ).
At the other end of the frequency range  as

 and the properties of the upper part of the
coating become dominate. Therefore, at high , the
slowness of all SAWs tends to  for the Rayleigh wave
in the half�space with the same properties as at 

If the SAW velocity exceeds the S�wave velocity vs

in the substrate, then its propagation excites body
waves causing the energy outflow into the lower half�
space. The traveling wave is turned into a leaky or
pseudosurface wave (PSAW) with the complex wave�
number  causing its exponential decay with distance
in accordance with Eq. (12),

Accordingly, the poles  located in the band
 of the complex plane s, are complex

with a positive imaginary part.
In the case of media with finite thickness (layer,

package of layers), the elements of the matrix  are
meromorphic functions without branching points.
Their complex poles are located symmetrically in all
four quadrants of the complex plane:  and the com�
plex�conjugate  In the considered case, the

branching points  of radicals  
for the lower half�space remain unremovable; there�
fore,  is determined on a Riemann manifold. The
choice of the branches of the radicals  in accordance
with the radiation condition for the body waves in the
lower half�space explicitly determines the sole (physi�
cal) Riemann sheet, which is fixed by vertical cuts

,  Usually, only one of each
pair of complex�conjugate poles can be on the physi�
cal sheet and contribute to representations (11) and
(12). The real poles also have counterparts on the non�
physical sheet. When the frequency is varied, the poles
move in the complex plane, going off the physical
sheet into the nonphysical one when crossing the cuts,
or coming back when moving in the opposite direc�
tion. The character of the pole motion sn(ω) (the form
of the dispersion curves) is determined by the coating
properties. The figures below depict the positive
branches of the real curves or the positive real and
imaginary parts of the complex curves ones.

The real branches of the dispersion curves  for
four gradient types of soft coating I ( ,
and ) are shown in Fig. 4, illustrating the effect of the
diffusion layer thickness. The higher modes ( )
appear at the cutoff frequencies  from the level
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 The complex branches  for 
are not shown here. As  increases, the coating
becomes harder and the cutoff frequencies shift to the
right, but, in all cases, the  values monotonically
increase within the range 

The amplitudes  at  for the waves excited in
the same media I by the concentrated source 
(here and below, the amplitudes  are calculated at a
distance of ten characteristic wavelengths from the
source: ) are shown in Fig. 5. Their distin�
guishing feature is that the amplitude of the first mode
dominates and increases with frequency, as does the
Rayleigh wave amplitude in the homogeneous half�
space with the soft material properties (Fig. 5, dash�
dotted line). The higher�mode amplitudes, on the
contrary, have local maxima only in certain frequency
ranges located after the cut�off frequency of the next
mode. Every higher mode passes on the maximal
amplitude level to the next one, which is clearly seen
in Fig. 5a.

For the hard coating II, the first branch of the dis�
persion curves starts from the value  and
goes downward, quickly crossing the level 
and becoming complex (Fig. 6); here and below 
and  of the complex curves are shown by dashed
lines. The pole  goes off into the nonphysical sheet,
but in exchange for it, the complex pole  comes to
the physical sheet through the boundary specified by
the cut, beginning the complex branch of the second
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mode. The following poles appear already in the com�
plex�valued zone  With an increase in ω
they are either stabilized at some distance from the real
axis, just like for the second mode in Figs. 6a and 6b,
or approach it, giving PSAWs with very small damping
decrements and the slownesses  ≈  (the
same as in the half�space with the properties of the
hard coating). The latter is typical for the third mode
at  (Figs. 6a and 6b) and for the second mode
at  (Figs. 6c and 6d). Thus, in a medium with
hard coating II, one traveling wave is always excited in
the low frequency band  and one weakly
decaying PSAW at  The intermediate fre�
quency range is the blocking range that is clearly seen
in the plots of PSAW amplitudes (Fig. 7). Here, it is
interesting to note the change of the second and third
mode contributions into PSAWs with the increase of ;

they exchange with their roles at 
when, at the definite frequency , the com�
plex branches  and  cross, merging in a twofold
pole and then diverging apart again at  (Fig. 8);
the complex poles are numbered according to the rule

The distinguishing feature of coatings III and IV is
the change of sign of the property gradient with depth;
therefore, in different frequency ranges, they
reveal properties of both medium I and medium II.
Medium III with a hard interlayer resembles
medium II because its soft substrate is covered with a
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Fig. 4. Real branches of the slowness curves sn(ω) for four variants of gradient dependencies in the coating I.
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harder layer. The curve  here is also quickly low�
ered to the branch point  and goes out into the non�
physical sheet, while the complex branch 
appears in its place (Fig. 9). However, starting from a
certain frequency, due to the presence of the upper soft
layer, traveling wave can be excited in this medium
once again. This is revealed in the complex pole 
coming up into the real�valued zone. However, unlike

( )1s ω

*s

( )2s ω

2s

medium I, the rest of the branches remain complex,
although some of them almost touch the real axis, giv�
ing PSAWs with very small attenuation (see, for exam�
ple, branch  at ).

In more detail, the replacement of the curve 

by  occurs as follows. When the real pole  moves
to the branch point  with the increase of ,
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Fig. 8. Effect of the complex pole merging into the twofold pole in the case of hard coating II.
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the counterpart pole  located in the nonphysical
sheet also moves to  somewhat staying behind  At

 ( ), the pole  passes the branch
point and goes out into the nonphysical sheet, moving
along the real axis toward  Then they merge in the
twofold pole and diverge into the lower and upper half�
planes as a pair of complex�conjugate poles  and 
Then, at , the pole  crosses the cut, coming
into the physical sheet as a complex branch 
while  moves not intersecting the cut and remaining
in the nonphysical sheet. Note that, in the range of
0.77 < ω <  0.80, both poles are in the nonphysical
sheet and do not contribute to Eqs. (11) and (12).
Instead, the contribution of the integral over the cut
banks, which describes the body waves, strongly
increases; i.e., a phenomenon of  wave energy reradia�
tion into the lower half�space takes place here,
because the energy is carried down by the body waves.

At , the complex poles  and  return to
the branch point  leaving then to the real axes of the
physical and nonphysical sheet, respectively. The fre�
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quency range remains in the blocking mode from the
departure of  to the nonphysical sheet until the
return of . At the beginning of this range, already at
the distance  from the source, the wave field
amplitude on the surface  is almost zero (Fig. 10).
Then, it once again increases due to the contribution
of the second mode, the complex pole  of which
approaches the real axis. After its return to the real
axis, its contribution to the wave�field amplitude
becomes dominant, just like in medium I.

The medium with coating IV is a typical example of
waveguides with an internal sound channel [16]. A set
of traveling waves propagates in it (Fig. 11), similarly
to the SAW set in the medium with coating I (see
Fig. 5). The thickness of gradient interlayers less
affects their properties than in other cases; therefore,
Figs. 11 and 12 give examples only for two limiting val�
ues  and . The main difference from the
medium I is observed in the behavior of the funda�
mental mode  First, the dependence of  on 
becomes nonmonotonic: a descending part of the
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curve  appears. Second, its amplitude is no longer
dominant and, as in other modes, it makes the main
contribution to the wave field only in a limited fre�
quency range (Fig. 12). Here, as in medium I, the
dominance of the amplitude is passed on from one
mode to another as ω increases. The continuous
change in the form of slowness and amplitude curves
for the first three modes in the course of gradual vari�
ation of the diffusion layer thickness  in coating IV is
illustrated in Fig. 13.

1s

gh

CONCLUSIONS

Efficient methods of analyzing wave fields excited
by a surface load in an elastic half�space with continu�
ous depth dependence of the properties have been
elaborated and implemented. The influence of the
properties of inhomogeneous coatings on the acoustic
wave characteristics has been analyzed.

Systematic comparison of the results obtained
within the gradient and multilayer models confirms
the possibility to approximate the FGM properties by
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Fig. 10. Amplitudes of the corresponding modes in medium III.

Fig. 11. Real branches of the dispersion curves for piecewise�uniform (a) and gradient over the whole thickness (b) of coating IV.
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steplike dependences for wave process simulation on
the day surface. For a soft coating with strongly con�
trast properties, such an approximation makes no
sense, since it leads to higher computing costs than
those in the initial gradient model.
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