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INTRODUCTION

Diffraction of elastic waves by internal obstacles
(cracks, cavities, inclusions) and resonance effects
observed in the diffracted field are of interest in the
development of wave methods for location and identifi-
cation of defects and in problems of the strength and
fracture of materials and structures. In addition, the
character of propagation and blocking of traveling
waves is of special interest. For example, the phenom-
enon of abrupt screening of signals by systems of peri-
odic obstacles (such as systems of interdigital contacts,
grooves, etc.) is used in acoustoelectronics to create fre-
quency filters based on surface acoustic waves [1].
Dielectric structures (photonic crystals) with wide band
gaps are used in photonics [2, 3]. Similar band gaps are
characteristic of the propagation of acoustic waves
(phonons) in periodic composite and crystal structures
(atomic phonon lattices) [4, 5]. Analogous effects are
observed in elastic media with periodic sets of cracks
[6], which are close to the subject of this paper.

The question arises as to whether sufficiently wide
band gaps can be formed in elastic waveguides without
the use of a large number of (periodic) obstacles. In par-
ticular, whether the trapped mode effect, which is well-
known for waveguides with obstacles [7–10] and con-
sists in the capture of incoming wave energy and its
localization in the vicinity of the obstacle, can be used
for this purpose. This effect is closely related to spectral
properties of the corresponding boundary-value prob-
lem. It occurs at frequencies 

 

ω

 

 close to the complex fre-
quencies of natural vibrations 

 

ω

 

n

 

 of the waveguide with

the defect under consideration (

 

ω

 

n

 

 is the spectral point
of the boundary-value problem). Eigensolutions 

 

u

 

n

 

 cor-
responding to spectral points 

 

ω

 

n

 

 describe the wave field
localization in the vicinity of the defect. One of the
manifestations of the effect of trapping is an abrupt
screening (filtration) of the corresponding frequency
components of a transient signal propagating along the
waveguide. If the obstacle is represented by a crack, the
resonance blocking is usually accompanied by a sharp
increase in the dynamic stress intensity at the crack
front.

Previously, phenomena of resonance capture and
blocking were considered by the examples of an elastic
waveguide with an obstacle in the form of a single hor-
izontal [11, 12] or inclined [13] cut (crack). On the
basis of analytic-computational solution of the corre-
sponding diffraction problems, we analyzed the distri-
bution of spectral points 

 

ω

 

n

 

 in the complex frequency
plane as a function of crack size and position in the
waveguide; we also analyzed their effect on the fre-
quency characteristics of signal propagation and reflec-
tion. In particular, we showed that resonance poles 

 

ω

 

n

 

fall on the real axis for certain geometric parameters;
i.e., we confirmed the possibility of the appearance of a
real point of a discrete spectrum in the continuous spec-
trum of traveling waves [14] and constructed the corre-
sponding eigensolutions that describe the wave field of
the trapped mode.

On the other hand, resonance blocking occurs in a
very narrow frequency band near 
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≈
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e
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, which
degenerates into a point for 

 

Im

 

ω

 

n

 

  0

 

. One can
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expect to extend the band of almost total waveguide
blocking if several discrete spectral points lying close
to each other and to the real axis appear owing to the
appearance of additional obstacles.

This paper continues our earlier studies described in
[11, 12]. As the first step, we analyze the changes in
spectrum structure and in the blocking properties
caused by the interference of adjacent cracks. Different
crack arrangements are considered: cracks in one plane,
cracks at different heights, cracks spaced along the
waveguide, and stacked cracks (one over another). We
determine how wave interaction between the cracks
changes the frequencies 

 

ω

 

n

 

 and how these changes
affect the blocking properties. In particular, we deter-
mine how much the results for the simpler case of a sin-
gle crack can be useful for analyzing the blocking prop-
erties of a system of cracks. The possibility of extend-
ing the frequency band of resonance blocking of a
waveguide by a special choice of the system of several
cracks is discussed.

MATHEMATICAL MODEL

As was mentioned, the phenomenon of resonance
capture and localization of wave energy may accom-
pany diffraction by obstacles of different nature. For
definiteness and comparability with earlier results, we
consider the obstacles in the form of thin horizontal
cuts (cracks). Therefore, the mathematical statement
and the general scheme of solution remain the same as
those given in [11, 12]; the notation is also retained
wherever possible.

In the framework of the two-dimensional statement
of the problem, we consider an elastic waveguide
(layer) that occupies the strip 

 

|

 

x

 

|

 

 < 

 

∞

 

, –

 

H

 

 < 

 

z

 

 < 0 in the
Cartesian coordinate system 

 

xOz

 

. The layer has several
cuts (cracks) of zero-valued thickness 

 

Ω

 

m

 

: 

 

|

 

x

 

 – 

 

x

 

m

 

|

 

 < 

 

l

 

m

 

,

 

z

 

 = –

 

d

 

m

 

 (see Fig. 1). Complex amplitudes 

 

u

 

 = {

 

u

 

x

 

, 

 

u

 

z

 

}

 

 of
steady-state harmonic vibrations of layer particles

 

u

 

e

 

–

 

i

 

ω

 

t

 

 with angular frequency 

 

ω

 

 satisfy the Lamé equa-
tions for an isotropic elastic medium; the harmonic fac-
tor 

 

e

 

–

 

i

 

ω

 

t

 

 will be omitted in what follows.

The layer boundaries 

 

z

 

 = 0 and 

 

z

 

 = –

 

H

 

 are free of
stresses: 

 

t

 

 = {

 

τ

 

xz

 

, 

 

σ

 

z

 

} = 0

 

, excluding the region where
the load 

 

q

 

0

 

 generating the initial wave field 

 

u

 

0

 

 is
applied. In what follows, we take 

 

u

 

0

 

 to be one of the
generated modes, namely, the mode determined by the
contribution of the residue from the real pole of Green’s
matrix 

 

ζ

 

 

 

≡

 

 

 

ζ

 

k

 

: 

 

u

 

0

 

 = 

 

a

 

0

 

e

 

i

 

ζ

 

x

 

 (see Eq. (2.8) in [11]). In this
case, the specific form of the load 

 

q

 

0

 

 is insignificant and
we only assume that it is applied at a sufficient distance,
to the left of the system of cracks 

 

Ω

 

 = 

 

.

We assume that the surfaces of cuts do not con-
tact being free of stresses, 

 

t

 

|

 

Ω

 

 = 0. The displacement

Ωm∪

 

field 

 

u

 

 at the cuts is discontinuous with unknown
jumps:

As distinct from the case of a single crack, the dif-
fracted wave field 

 

u

 

C

 

 is now the sum of 

 

M

 

 fields 

 

u

 

m

 

induced by individual jumps 

 

v

 

m

 

. Hence, the combined
field 

 

u

 

 formed in the waveguide has the form

where 

 

u

 

0

 

 is the given field of the source or one of the
incoming waves; the fields 

 

u

 

m

 

 and the corresponding
stress fields 

 

t

 

m

 

 are given by the former integral repre-
sentations (see Eq. (2.6) in [11]):

 

(1)

 

where 

 

V

 

m

 

 = 

 

F

 

[

 

v

 

m

 

]

 

 are the Fourier transforms (symbols)
of the unknown displacement jumps at the cuts. It
should be noted that the specific form of the symbols of
Green’s matrices 

 

N

 

m

 

 and 

 

S

 

m

 

 depends on the crack depth

 

d

 

m

 

, so that these matrices are different for cracks lying
in different planes.

In the case of a single crack, the substitution of the
integral representation of the stress field 

 

t

 

 into the
boundary conditions at the crack faces reduces the
problem to the Wiener–Hopf integral equation with
hypersingular matrix operator 

 

�

 

 in the unknown jump

 

v

 

 (see Eq. (4.6) in [11]). In the case of a system of
cracks, we introduce the generalized vector of unknown
jumps 

 

v

 

 = {

 

v

 

1

 

, v2, …, vM} and obtain the system of inte-
gral equations in this vector:

vm x( ) u x dm–, 0–( ) u x dm–, 0+( ),–=

x xm– lm, m< 1…M.=

u u0 um,
m 1=

M

∑+=

um x z,( ) 1
2π
------ Nm α z,( )Vm α( )e iαx– α,d

Γ
∫=

tm x z,( ) 1
2π
------ Sm α z,( )Vm α( )e iαx– α,d

Γ
∫=

�mvm �mjv j

j 1 j, m≠=

M

∑+ fm,=

xz

z = –H
2l1

(x1, –d1)

Ω1

Ω2

ΩM

(x2, –d2)

(xM, –dM)

Fig. 1. Elastic waveguide with a system of horizontal
cracks.
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,

(2)

Each of the operators �m describes the stress field
that occurs within the segment Ωm and corresponds to
the displacement field vm within the same segment
without taking into account the presence of neighbor-
ing cracks. In essence, this is the same operator � with
a hypersingular kernel l(x – ξ) and a matrix kernel sym-
bol L(α) as the operator in the problem of a single crack
in the layer (see Eq. (4.4) in [11]). In turn, operators �mj
describe the stress fields in the region Ωm caused by the
jumps vj within other segments Ωj , j ≠ m; i.e., they
determine mutual influence of cracks. Because the
points (x, z) at which the stress is determined do not
belong to the region Ωm at which the jump is given, the
kernels of these operators smj(x – ξ) are nonsingular.

The scheme that was used in [11] to reduce integral
equations to an infinite algebraic system can be
extended to the case of several regions Ωm. However, in
the latter case, the scheme becomes rather cumber-
some. For this reason, we apply the Galerkin procedure
combined with the expansion of the unknown jumps in
the orthogonal Chebyshev polynomials of the second

kind Uk(x) with the weight , i.e.,

(3)

and the use of projection along the same coordinate

functions (x). As a result, we obtain a linear alge-
braic system of equations in unknown coefficients

(x):

x z,( ) Ωm, m∈ 1…M=

�mvm lm x ξ–( )vm ξ( ) ξd

x xm– lm<
∫≡

=  
1

2π
------ Lm α( )Vm α( )e iαx– α,d

Γ
∫

�mjv j smj x ξ–( )v j ξ( ) ξd

x xm– lm<
∫≡

=  
1

2π
------ S j α dm–,( )Vm α( )e iαx– α,d

Γ
∫

Lm α( ) Sm α dm–,( ),=

fm t0 x dm–,( ).–=

1 x2–

vm x( ) cm
k pm

k x( ),
k 1=

Nm

∑=

pm
k x( ) Uk

x xm–
lm

--------------⎝ ⎠
⎛ ⎞ lm

2 x xm–( )2– ,=

pm
l

cm
k

(4)

which can be expressed in matrix form as follows:

Dc = g. (5)

Here, c = {c1, c2, …, cM} is the generalized vector

of unknown expansion coefficients, where cm = { ,

, …, } are the vectors of the coefficients corre-
sponding to individual jumps vm; the total length of the
generalized vector (the dimension of matrix D) is N =
2(N1 + N2 + … + NM).

The vector of the right-hand parts g is formed in a

similar way in terms of projections  of the given
field t0:

In the matrix

the elements of diagonal blocks Am of dimension 2Nm ×
2Nm and the elements of nondiagonal blocks Bmj of
dimension 2Nm × 2Nj have the following forms:

,

where the functions Pk(αlm) = Jk + 1(αlm)/α are the
results of the Fourier transformation of the coordinate

functions F[ ] = Pk(αlm) .

With the coefficients  being calculated, the wave
fields and their energy characteristics (the time-aver-
aged energy flux density) are determined through rep-
resentations (1) (by numerical integration) in the near-
field zone and with the use of residue expansions (see

am
lkcm

k bmj
lk cm

k

k 1=

N j

∑
j 1=

j m≠

M

∑+
k 1=

Nm

∑ gm
1 ,=

m 1 2 … M,, , ,=

cm
1

cm
2 cm

Nm

gm
l

gm
l t0 x dm–,( ) pm

l x( ) x.d

x xm– lm<
∫=

D

A1 B12 … B1M

B21 A2 … B2M

. . … .

BM1 BM2 … AM⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

am
lk 1

2π
------ Lm α( )Pk αlm( )Pl αlm–( ) α,d

Γ
∫=

l k, 1 2 … Nm, , ,=

bmj
lk 1

2π
------ S j α dm–,( )Pk αl j( )Pl αlm–( )e

iα x j xm–( )–
α,d

Γ
∫=

l 1 2 … Nm, k, , , 1 2 … N j,, , ,= =

pk
m e

iαlm

cm
k
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Eqs. (2.7) and (2.8) in [11]) in the far-field zone. To char-
acterize the propagation of individual modes u0(x, z) =

ak , we introduce, as earlier, the transmission and
reflection coefficients κ± = E±/E0, where E0 is the
energy of the incident wave u0 and E+ and E– are the
energies of waves transmitted through the crack region
and reflected from it, respectively. The quantities E0

and  are determined by numerical integration of the
horizontal component of the corresponding energy den-
sity vectors over the waveguide cross section. The
numerical solution is verified by the energy balance for-
mula: κ+ + κ– = 1.

The eigenfrequencies ωn (the poles of the har-
monic wave field u(x, z, ω) in the complex frequency
plane ω) are approximated by the roots of the charac-
teristic equation

(6)

At the same time, the roots  of the characteristic
equations detAm(ω) = 0 (for the diagonal matrix blocks
of system D) in fact represent the resonance poles of the
corresponding single individual cracks in the layer.

BLOCKING PROPERTIES OF THE SYSTEM
OF CRACKS

At first glance, one can expect that, in the case when
spacing between the regions Ωm is sufficiently large, the

spectrum ωn will be the sum of spectra  for each
individual cut. On the other hand, the amplitudes of

traveling waves ak(z)  that ensure the wave interac-
tion between the cracks are independent of x (for real-
valued ζk) in the two-dimensional model under consid-
eration. This means that the mutual effect must be the
same for arbitrary crack-to-crack distances.

Finally, from the physical point of view, if the first
obstacle has blocked the signal propagation, the pres-
ence of the following ones must not considerably affect
the pattern, because the signal does not arrive at them.
In other words, additional obstacles positioned behind
the first one should not change the frequency of reso-
nance blocking and, consequently, the positions of res-
onance poles that are close to the real axis.

Even the first calculations showed that wave interac-
tion between obstacles realizes both seemingly alterna-
tive possibilities. The positions of the poles ωn signifi-
cantly vary with varying horizontal distance between
the cracks; however, this occurs in such a way that res-
onance blocking frequencies conditioned by each indi-
vidual crack remain intact.

Below, all the results are given in dimensionless
form, which assumes a layer thickness H, a transverse
wave velocity vS, and shear modulus µ equal to unity.

e
iζk x

E0
±

∆ ω( ) detD ω( )≡ 0.=

ωn
m

ωn
m

e
iζk x±

In this case, the dimensionless angular frequency is ω =
2πfH/vS, where f is the dimensional frequency in hertz.
For definiteness, in all examples given below, we used
Poisson’s ratio ν = 1/3 (for which vP/vS = 2, where vP
is the velocity of longitudinal waves in the layer) and u0
represented by the first (fundamental) antisymmetric
mode a0 [15] corresponding to the maximum wave
number ζ1 (the maximum real-valued pole of the Fou-
rier symbol of the Green’s function of the layer). This
mode is most sensitive to the defects considered here
[16].

Two Cracks in One Plane

Consider the incidence of mode a0 on two cracks of
unit halfwidth (l1 = l2 = 1) located at identical depths
(d1 = d2 = 0.25). The distance between the crack centers
∆x12 = |x1 – x2 | varies, and we assume that x1 = 0, so that
∆x12 = x2 > 2.

In Fig. 2a, with the use of the grayscale pattern and
level lines, we show the transmission factor κ+ as a
function of two parameters: distance x2 and frequency
ω. The darkest areas in the (x2, ω) plane correspond to
total blocking κ+ = 0, and the white areas, to total trans-
mission κ+ = 1; the shades of gray give intermediate
values of κ+(x2, ω). The solid lines ω = Reωn(x2)
imposed on the pattern show the real part of the reso-
nance poles ωn versus x2 (the number of the line corre-
sponds to the number n of the pole). The imaginary part
ω = Imωn(x2) is given in the lower plot by the solid
lines with respective numbers (Fig. 2b).

For comparison with the case of the same but iso-
lated crack (l = 1, d = 0.25), in Fig. 2a we give the nar-
row strip showing the function κ+(ω) for this crack with
the use of the same gray scale pattern. The values of the
real parts of its three resonance poles closest to the real

axis (Re  = 1.33, 2.11, and 2.34) are plotted as light
dot-and-dash lines. The dark zones of considerable
blocking of the isolated crack (bands 1.2 < ω < 1.4 and
2.1 < ω < 2.3) are located near these values.

In Fig. 2, attention is focused on the fact that fre-
quency bands of blocking remain approximately the
same as in the case of a single crack, although the posi-
tions of the poles ωn vary with distance x2. At first
glance, this behavior contradicts the earlier inference
[11, 12] about the role of resonance poles ωn lying close
to the real axis in the appearance of the blocking effect.
However, a more careful analysis of the pole motions in
the complex plane ω shows that there is no contradic-
tion.

With increasing distance x2, the values of Reωn
monotonically decrease and the negative imaginary
parts Imωn alternatively decrease and increase within
certain limits with an upper boundary Imωn = 0. Thus,
the poles ωn move in the lower half-plane of the com-
plex plane ω from left to right alternatively deviating

ωn
1
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from and approaching the real axis up to the point of
touching it at certain discrete values of x2 (the appear-
ance of the real point of discrete spectrum ωn corre-
sponds to the total energy blocking and the formation of
undamped natural vibrations localized near the
defect—see, e.g., Fig. 15 in [12]). The most interesting
feature is that these motions are such that the poles
approach the real axis only near the aforementioned

frequency bands of blocking by a single crack and,
when a pole leaves the axis, it immediately gives place
to the next one that approaches the axis. As a result,
nearly real-valued poles ωn ensuring resonance block-
ing (the dark horizontal strips in Fig. 2a) are always
present in these frequency bands irrespective of the dis-
tance between the cracks. The poles moving down-
wards rapidly cease affecting the blocking. For exam-

–0.2

5 6 7 8 9 10 11
x2

–0.1

0

1

(b)

(a)

2

3
0.1 0.3 0.5 0.7 0.9

ω

Reωn

Imωn

3 4 5 6 7
8

9

1 2

1 2

3 4

5

6
7

8

9

Fig. 2. Transmission coefficient κ+(x2, ω) and resonance poles ωn(x2) for two cracks at the depth d = 0.25 versus the distance x2
between the cracks.



ACOUSTICAL PHYSICS      Vol. 55      No. 1      2009

RESONANCE BLOCKING OF TRAVELING WAVES 13

ple, only the poles with Imωn < –0.1 are present in the
light strip of nearly total transmission 1.5 < ω < 2.

The analysis shows a less obvious and, therefore,
more unexpected fact. Namely, at frequencies ω exactly
coinciding with Reωn, the effect of blocking is rather
decreased than increased, as in the case of a single
crack. Light strips (transmission bands) traversing the
dark or gray background along the curves Reωn(x2) are
evidence of this. In the relief surface κ+(x2, ω), these
transmission bands look like narrow walls (or mountain
chains), whereas narrow depressions (canyons, as they
were called in [11, 12]) were situated along Reωn (for
|Imωn | � 1) in the case of a single crack. With increas-
ing |Imωn |, the chains become wider and lower and the
canyons become wider and shallower and disappear
(i.e., diffusing to the level of the surrounding surface) at
approximately |Imωn | > 0.15–0.2. At low frequencies
of the first blocking band 1 < ω < 1.5, the horizontal dis-
tance between the transmission curves (i.e., the dis-

tance between the curves Reωn(x2) at a fixed fre-
quency ω) is approximately equal to half of the wave-
length λ0 of the zeroth antisymmetric mode a0: λ0/2 =
π/ζ1, and the function κ+(x2) is minimum in the middle
of this distance.

In other words, resonance interaction between
cracks occurs periodically (with a period of λ0/2) with
varying distance between them, and this interference
manifests itself as deblocking of the waveguide. This
process sharply changes the energy flux structure, in a
way similar to that in the case of a single crack (see the
description of Figs. 9 and 10 in [11]). The resonance
blocking of the waveguide is accompanied by the
appearance of strong energy vortices in the time-aver-
aged energy flux of the field of steady-state harmonic
vibrations ue–iωt. The system of vortices is formed
above and below the crack, the maximum energy being
concentrated in the rectangle between the crack and the
nearest layer boundary (see Figs. 3 and 9 in [11]). When

5 6 7 8 9 10 11
x2

1

(a)

2

3
0.1 0.3 0.5 0.7 0.9

ω

1

(b)

2

3
ω

κ1
+ κ2

+

Fig. 3. Transmission coefficient κ+(x2, ω) for two cracks at different depths (a) d1 = 0.25, d2 = 0.5 and (b) d1 = 0.185, d2 = 0.27.
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the waveguide is deblocked, the system of vortices is
replaced by a large single vortex, which encompasses
the crack, and the energy flux rounds the obstacle along
the periphery of this vortex and moves away to infinity
(κ+ ≈ 1, see Fig. 10 in [11]). In the case of two cracks, a
similar change in the energy flux structure occurs in the
course of waveguide blocking and deblocking in the
transmission band.

Spaced Cracks at Different Depths

As in the previous case, variation of the horizontal
distance between the cracks does not change the fre-
quency bands of blocking (see, e.g., Fig. 3 for the same
cracks as those in Fig. 2, but at different depths (a) d1 =
0.25, d2 = 0.5 and (b) d1 = 0.185, d2 = 0.27). It is impor-
tant to note that the blocking properties of the system of
cracks are formed as the sum of the bands of blocking
of every separate crack. These bands depend only on
crack size and depth. Because of this, there is no need
to solve the optimization problem for the whole system
to calculate the geometry of a system of obstacles
(cracks in our case) that would ensure the required
blocking properties, such as vibration insulation in a
given frequency range. It will suffice to examine the
resonance blocking properties of a single obstacle as a
function of its size and position. Then, the desired
blocking parameters can be achieved by simple selec-
tion of a system of obstacles with complementary

bands of blocking. Examples of such functions (at fixed
size, depth, or frequency) are given in Figs. 6 and 7 of
[11] and Figs. 10 and 11 of [12]. Figure 4 shows the pat-
tern κ+(d, ω) for the cracks of unit halfwidth (l = 1) as a
function of depth and frequency; using this pattern, one
can easily select the depths of several cracks to ensure
signal filtration (or vibration insulation) in the required
frequency range.

For example, the solid line in Fig. 5a shows the fre-
quency-dependent transmission coefficient κ+(ω) in the
case of a waveguide with three cracks of unit halfwidth
l (d1 = 0.185, d2 = 0.27, d3 = 0.29; x2 = 9.5, x3 = 20), each
of them ensuring resonance blocking at a certain fre-
quency near ω = 2 (the dashed and dot-and-dash lines),
so as to ensure combined signal filtration in the band
2 < ω < 2.5. Blocking in a still wider frequency band is
achieved with three cracks with l = 2 at depths d1 = 0.35,
d2 = 0.375, and d3 = 0.4; x2 = 20 and x3 = 40 (Fig. 5b).

Thus, although the mutual influence between cracks
is perceptible at arbitrary distances (which, in particu-
lar, is evidenced by the variation of resonance pole
positions in Fig. 2), the determination of blocking
zones of a system of spaced cracks can be performed on
the basis of the discrete approach, in which every indi-
vidual crack is described by the reflection and transmis-
sion matrixes and the final coefficients are calculated by
solving a system of linear equations.

1

0.1 0.3 0.5 0.7 0.9 d

0 0.4 0.8

2

3

ω

Fig. 4. Transmission coefficient κ+(x2, ω) for a single crack (l = 1).
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Stacked Cracks

In the case of cracks not spaced along the
waveguide, i.e., in the case when the projections of
regions Ωm on the x axis significantly overlap, each
crack is actually located in a waveguide of smaller
thickness. The transverse size of these waveguides is
determined either by the distance from the layer bound-
ary to the neighboring crack, or by the distance between
the cracks located above and below the crack of interest
(in the case of three-story cracks and higher). For this
reason, estimation of blocking properties of the whole
system on the basis of the results obtained for single
cracks in a layer of unit thickness is limited and
requires certain corrections. First of all, one should take
into account the fact that resonance energy localization
usually occurs in the rectangular area between the crack
and the nearest surface of the layer or the half-space. As
a result, a crack lying close to the waveguide surface or
a neighboring crack of greater length will localize
energy in this area at frequencies coinciding with those
calculated for a single crack located at the same dis-
tance from the surface of the layer or the half-space
(i.e., the effect of the opposite surface can be
neglected). Second, in the case of validity of the
assumption that every stacked crack behaves as a single
crack located in the waveguide of a smaller thickness,
the dimensionless frequencies of resonance blocking
obtained for the layer of unit thickness can be easily
recalculated to the case of the stacked cracks of interest.

For example, let two cracks with halfwidths of l1 and
l2 be positioned one over the other in a waveguide of
unit thickness (H = 1) at depths of d1 and d2 (0 < d1 <
d2 < 1). The thicknesses of the imaginary waveguides
for the first and second cracks are H1 = d2 and H2 = 1 – d1,
respectively. We assume that results for a single crack
of arbitrary halfwidth l located at arbitrary depth d in
the layer of unit thickness are available, or they can be
easily obtained. The dimensionless input parameters of
the stacked cracks under consideration in the imaginary

waveguides are  = lm/Hm and  = dm/Hm, m = 1, 2.
They define certain sets of dimensionless resonance

frequencies , n = 1, 2, 3, …; m = 1, 2. Then, these
frequencies are recalculated into the system of units
related to the actual waveguide (H = 1) according to the

relationships  = /Hm.

Figure 6 gives an example of the frequency depen-
dence of the transmission coefficient κ+(ω) for two
stacked cracks (l1 = l2 = 1, d1 = 0.25, d2 = 0.85) with
blocking bands near the frequencies ω = 0.55, 0.9, 1.35,
1.7, and 2.3. In this case, the thicknesses of the imagi-
nary waveguides are H1 = 0.85 and H2 = 0.75, and the
dimensionless parameters of the corresponding single

cracks are  = 1.18,  = 0.29 and  = 1.33,  = 0.8.
In Fig. 6, the dashed and dotted lines correspond to the

transmission coefficients (ω) for each of the cracks

l̃m d̃m

ω̃n
m

ωn
m ω̃n

m

l̃1 d̃1 l̃2 d̃2

κm
+

alone versus the fundamental angular frequency ω =
ωm/Hm. It is seen that the above bands of resonance
blocking by a system of stacked cracks is determined
by the resonance properties of individual cracks.

CONCLUSIONS

On the basis of the numerical analysis carried out
within the framework of the model of a two-dimen-

1.0

1.5 2.0

κ1
+

ω

0
2.5 3.0

0.5

(b)
κ2

+

κ3
+

κ+

1.0

0.5

(a)

0

Fig. 5. Frequency dependence of the transmission coeffi-
cient κ+ for the system of three cracks (the solid line) and
for individual cracks (the dashed and dot-and-dash lines)
for the crack length l = (a) 1 and (b) 2.

1.0

1

κ1
+

ω
0 2 3

0.5

κ2
+

κ+

Fig. 6. Transmission coefficients κ+(ω) for two story cracks
(the solid line) and individual cracks in the corresponding
waveguide of smaller thickness (the dashed and dotted
lines).
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sional elastic waveguide with several horizontal cuts
(cracks), we found that, although the set of resonance
poles ωn cannot be obtained as a simple sum of poles

 corresponding to individual obstacles considered
alone, the blocking properties of a system of cracks are
often determined by the frequencies of trapped modes
(frequencies of resonance blocking) of individual
obstacles. Therefore, the results obtained for single
cracks can be used to determine the parameters of an
aperiodic system of several obstacles to ensure band
gaps or vibration insulation in required frequency
bands.

ACKNOWLEDGMENTS
This paper was supported by the Russian Founda-

tion for Basic Research (project no. 06-01-96607),
INTAS (project no. 05-1000008-7979), and the Minis-
try of Education and Science of Russian Federation
together with the German Academic Exchange Service
DAAD (Deutscher Akademischer Austausch Dienst).

REFERENCES
1. Physical Acoustics: Principles and Methods, Ed. by

W. P. Mason (Academic, New York, 1968; Mir, Moscow,
1966), Vol. 1, Pt. A.

2. A. Figotin, Yu. A. Godin, and I. Vitebsky, Phys. Rev. 57,
2841 (1998).

3. E. L. Ivchenko and A. N. Poddubnyœ, Fiz. Tverd. Tela 48,
540 (2006) [Phys. Solid State 48, 581 (2006)].

4. J. O. Vasseury et al., J. Phys.: Condens. Matter 10, 6051
(1998).

5. A. Avila, G. Griso, and B. Miara, C. R. Acad. Sci., Ser. I:
Math. 340, 933–938 (2005).

6. Ch. Zhang and D. Gross, On Wave Propagation in Elas-
tic Solids with Cracks (Computational Mechanics Publ.,
Southampton, 1998).

7. C. M. Linton and D. V. Evans, Q. J. Mech. Appl. Math.
44, 487 (1991).

8. Yu. I. Bobrovnitskiœ and M. P. Korotkov, Akust. Zh. 37,
872 (1991) [Sov. Phys. Acoust. 37, 453 (1991)].

9. V. A. Babeshko, Izv. Vyssh. Uchebn. Zaved. Radiofiz.
Sev.-Kavkaz. Region., Spec. Issue, 90–91 (1994).

10. D. A. Indeœtsev and E. V. Osipova, Zh. Tekh. Fiz. 66 (8),
124 (1996) [Tech. Phys. 66, 811 (1996)].

11. E. V. Glushkov, N. V. Glushkova, and M. V. Golub,
Akust. Zh. 52, 314 (2006) [Acoust. Phys. 52, 259
(2006)].

12. E. Glushkov, N. Glushkova, M. Golub, and A. Boström,
J. Acoust. Soc. Am. 119, 3589 (2006).

13. E. V. Glushkov, N. V. Glushkova, and M. V. Golub, Prikl.
Mat. Mekh. 71, 702 (2007).

14. I. I. Vorovich, Dokl. Akad. Nauk SSSR 245, 1076 (1979)
[Sov. Phys. Dokl. 24, 304 (1979)].

15. I. A. Viktorov, Rayleigh and Lamb Waves: Physical The-
ory and Applications (Nauka, Moscow, 1966; Plenum,
New York, 1967).

16. P. D. Wilcox, M. J. S. Lowe, and P. Cawley, J. Intell.
Mater. Syst. Struct. 12, 553 (2001).

Translated by A. Vinogradov

ωn
m



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


