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Abstract Explicit integral and asymptotic representations for the total wave fields and spe-
cific guided waves generated in anisotropic laminate structures by surface loads are offered
as a basis for low-cost computer models. Their abilities are demonstrated and experimen-
tally verified with two practically important examples: a reconstruction of effective elastic
moduli of a fiber-reinforced composite plate and a frequency tuning of a patch piezoactuator
with accounting for the radiation directivity caused by the plate’s anisotropy.
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1 Introduction

Nowadays composite materials become widespread in engineering applications, first of all,
in airspace, power and chemical industry. Structural elements produced from the compos-
ites possess more complicate mechanical properties than componentes manufactured from
isotropic materials, e.g., from aluminium alloys. Therefore, computer simulation of their
elastodynamic behavior is a much more challenging task.

In engineering design practice, the difficulties relating to complex geometry and ma-
terial properties are commonly overcome by the use of finite element (FEM) or finite dif-
ference (FDM) methods that are based on a mesh discretization of structural components.
These and related methods are implemented in various commercial packages and, due to
their indisputable advantages, they are considered as universal tools of computer simula-
tion. However, a discretization of lengthy structures for wave propagation problems, which
requires more and more elements as distances or frequencies increase, becomes time and, es-
pecially, memory consuming. Therefore, efficient alternatives to these approaches allowing
significant reduction of computation costs have been recently developed and successfully
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implemented for layered composite dynamics. For instance, these are the spectral element
method (SEM) [19, 24], which is a high-order FEM, and the local interaction-simulation
approach (LISA) [16]. Another promising approach adjusted to waveguides with plane-
parallel boundaries is the spectral finite element method (SFEM) [11], which combines
integral Fourier transforms for time and spatial in-plane variables and the Rayleigh-Ritz
method with the transverse coordinate.

With domains of simpler, classical form, e.g., for laminate plates with local inhomo-
geneities, analytically-based methods are also suitable. Explicit analytical representations
for guided waves (GWs) do not require any spatial discretization, and so they remain prac-
tically costless irrespective of the sample’s size. Therefore, hybrid schemes, combining
mesh or boundary-element discretization of local areas (flaws, stringers, rivets, etc.) with
an analytically-based continuation of incident and scattered wave fields among them, are of
great interest, as well.

Besides the designing purposes, the mathematical modeling is an indispensable part of
GW structural health monitoring (SHM) [6, 20]. The SHM aims at diagnosis and failure
prevention of vitally important components. It is based on the GW property to propagate in
plate-like structures for long distances exhibiting high sensitivity to local inhomogeneities
of any kind including hidden defects such as cracks, delaminations, and surface-breaking
fractures. The defects manifest themselves in scattered GWs, which also propagate for long
distances and may be registered by sensors. The incident and diffracted GWs are actuated
and sensed by piezoelectric wafer active sensors (PWAS) attached to or incorporated into the
inspected structure. In this way PWAS arrays control large areas of structural components.
The location of defects is determined by the arriving time of reflected signals (time-of-
flight – TOF), while the patterns of scattered diagrams provides information about defects’
properties.

The mathematical modeling is used here for the prediction of velocities and radiation
diagrams of GWs actuated in specific structures by driving signals of prescribed shapes and
central frequencies, as well as for the scattered wave field simulation. With isotropic plates,
the GWs are well-studied Lamb waves. Their modal characteristics are independent of the
direction of wave propagation over the plate, while they become directionally dependent in
anisotropic composite structures. The latter essentially complicates the mathematical mod-
eling. Nevertheless, analytically-based methods of wave analysis in anisotropic laminate
structures have been also well developed [18, 22, 23]. The GWs have been derived and used
here in the form of plane waves (2D normal modes). Such expressions yield a good in-
sight into the peculiarities of GW propagation in anisotropic structures, however, they are
ill-suited to the approximation of cylindrical waves, spreading out from local sources and
obstacles. The cylindrical GWs are of prime concern for a 3D wave analysis in composite
plates, therefore, a derivation of their closed asymptotic representations strictly accounting
for the angular dependency of characteristics induced by the material anisotropy has been
an urgent problem.

In a 2D statement, it is possible to represent the wave field generated by a local source
in terms of a one-fold path integral in the wavenumber domain. The residues from the real
poles ζn of its integrand yield close analytical representations for the plane GWs generated
by the source, e.g., for the waves propagating in the x direction, in the form

un(x,z) = tnan(z)ei(ζnx−ωt), n = 1,2, ... (1)

The amplitude vectors an(z) depend on the transversal coordinate z, being spatial modal
eigenforms in the plate’s cross-section; ζn are wavenumbers; ω is the angular frequency of
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steady-state time harmonic oscillation e−iωt ; tn are factors determined by the wave source or
scatterer (e.g., by the actuating force or reflection coefficients). The dispersion dependencies
ζn = ζn(ω) are obtained as roots of certain transcendent characteristic equations ∆(ζ ,ω) =
0 which can be explicitly written in a closed form. Being numerically obtained, the roots ζn
yield the Lamb mode phase and group velocities vp,n = ω/ζn and vg,n = dω/dζn, used, for
instance, for TOF estimation.

However, in the 3D case, the wave fields are represented via two-fold path integrals, and
the residue technique cannot bring them to explicit analytical expressions. As a compromise
decision, it was proposed that one of these two-fold integrations be evaluated analytically,
using the residue technique, while the remaining one be performed numerically [2]. As an al-
ternative to numerical integration, an approximation of a 3D GW radiation in an anisotropic
plate by a superposition of 2D plane waves has been also implemented [25].

At the same time, similar to Eq. (1) closed representations for cylindrical GWs, strictly
accounting for the actuating force and the directivity induced by anisotropy, had been al-
ready derived in the course of our activities in this field that goes back to the 1980s. Un-
fortunately, at that time it was not proper published and its description was only available
in internal reports and papers in Russian. Due to the increasing interest in composite mate-
rials, more implementations of this approach have been accomplished in last years, and its
summary description in English has appeared at last [7, 10].

The objective of the present paper is to demonstrate the abilities of these representations
by two examples of specific theoretical and experimental research. First, this is a reconstruc-
tion of effective material constants of a fiber-reinforced composite plate, which is based on
the data acquired by means of laser Doppler vibrometry (LDV) of PWAS actuated surface
waves (Section 4). Then an example of experimentally confirmed central frequency tuning,
performed with accounting for radiation directivity caused by fibers, is given in Section 5.
Previously, Section 2 provides a summary of the mathematical framework, which is illus-
trated by numerical examples, while the experimental setup is specified in Section 3.

It is worthy to note that all experimental measurements included in the paper have been
carried out in the headed by Prof. R. Lammering Institute of Mechanics, Helmut-Schmidt-
University, Hamburg, using its excellent equipment facilities.

2 Theoretical background

A more detailed description of the mathematical framework used for computer simulation
may be found in Ref. [7] and papers cited therein. The present section gives just a brief
review of the approach and the final GW representations used in the computations, keeping
the notations of paper [7].

Mathematically, the elastodynamic response u(x,ω)e−iωt of a laminate composite plate
to a steady-state time-harmonic loading q(x,y)e−iωt applied to a finite area Ω on its top
surface (Fig. 1) is described by a solution of a boundary value problem with respect to the
complex amplitude of the displacement vector u = (ux,uy,uz) = (u1,u2,u3). In Cartesian
coordinates x = (x,y,z) = (x1,x2,x3) the structure occupies the layer domain D = ∪M

m=1Dm:
|x|< ∞, |y|< ∞,−H ≤ z ≤ 0, composed of the sublayers

Dm : |x|< ∞, |y|< ∞,zm+1 ≤ z ≤ zm, m = 1,2, ...,M

with different material properties. Here z1 = 0,zM+1 = −H, H = ∑M
m=1 hm is the thickness

of the whole structure and hm = zm − zm+1 are the thicknesses of sublayers; ω = 2π f is
the angular frequency, f is the frequency. Below the harmonic factor e−iωt is omitted. In
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every sublayer the displacement components ui obey the elastodynamic equations in dis-
placements

Ci jklul, jk +ρω2ui = 0, i = 1,2,3. (2)

The elastic stiffness tensor Ci jkl and the density ρ keep constant values within every sublayer
Dm, thus, they are piecewise constant functions of the transverse coordinate z. It is assumed
that the outer sides of the waveguide z = 0 and z = −H are stress-free except the loading
area Ω , and the sublayers are perfectly bonded.

x

y

z

Ω

0

Di

H

hi

Fig. 1 Geometry of problem.

In the general case, the applied load q may be of different nature. In particular, it may de-
scribe distribution of contact stresses under an interacting body (indentor, transducer, piezo-
patch actuator, and so on) or simulate the effect of laser-generated thermal stresses. Using
the Fourier transform Fxy with respect to the horizontal coordinates x and y, applied to
Eq. (2) and to the boundary conditions at the plate sides and interfaces z = zm, the struc-
ture’s response u(x,ω) can be represented via the convolution of the structure’s Green’s
matrix k(x,ω) with the load vector-function q:

u = k ∗q =
∫∫
Ω

k(x−ξ ,y−η ,z)q(ξ ,η)dξ dη (3)

or, alternatively, via their Fourier symbols K = Fxy[k] and Q = Fxy[q]:

u(x) = F−1
xy [KQ] =

1
4π2

∫
Γ+

2π∫
0

K(α,γ ,z)Q(α,γ)e−iαr cos(γ−φ)dγαdα. (4)

The columns k j of the Green’s matrix k are the displacement vectors excited by concentrated
point loads applied to the surface z = 0 along the basic vectors i j, j = 1,2,3. In Eq. (4) the
Cartesian variables x and the Fourier parameters α = (α1,α2) are taken in the cylindrical
and polar coordinates (r,φ ,z) and (α,γ), respectively. Integration contour Γ + goes in the
complex plane α along the real semi-axis Reα ≥ 0, Imα = 0, bypassing real poles ζn =
ζn(γ)> 0 of the matrix K elements according to the principle of limiting absorption.

Efficient computer implementation of these explicit solutions is based on the fast and re-
liable algorithms of Green’s matrix calculation. With a given Q (either in a closed analytical
form or approximately, e.g. via a contact problem solution [9], or a FEM simulation [3]), the
response u inside the area Ω and in a not distant vicinity can be obtained via direct numerical
integration of integral (4), while with increasing distance r, the computational expenses also
increase due to the oscillating factor exp(−iαr cos(γ −φ)) in the integrand. In the 2D case,
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when the integrals for u are one-dimensional, this restriction is conventionally overcome by
the use of the residue technique yielding plane GWs of form (1) as the residues from the
poles ζn. With isotropic materials and axially symmetric loadings (including with the point
loads yielding Green’s matrix k), the integration over γ in Eq. (4) can be performed ana-
lytically, so that the two-fold inverse Fourier integrals are reduced to one-dimensional path
integrals of inverse Fourier-Bessel transform. The residue technique is also applicable to
such integrals leading to explicit representations of cylindrical GWs in terms of cylindrical
Hankel functions.

The anisotropy of elastic properties usually makes analytical integration impossible even
for the matrix k(x) components. Therefore, the derivation of GW asymptotics from Eq. (4) is
obtained via the application the residue theorem to the integral over path Γ + in combination
with the stationary phase method for remaining integral over γ . It brings the explicit integral
representation for Green’s matrix k to the asymptotic expansion [7]

k(x) =
Nr

∑
n=1

kn(x)+O((ζ r)−1) r → ∞

kn(x) =
Mn

∑
m=1

bnm(φ,z)eisnmr/
√

ζnr [1+O((ζnr)−1)], r → ∞

bnm =
√

2iζn/(πs′′n(γm))Rn(θm,z), (5)

Rn(θm,z) =
i
2

ζnresK(α,θm,z)|α=ζn

snm = sn(γm) = ζn(θm)sinγm, θm = γm +φ +π/2,

where γm are stationary points of the oscillating exponentials (the roots of the equation
s
′
n(γ) = 0), Mn is the number of roots γm in the interval 0 < γ < π , Nr is the number of real

poles ζn.
To obtain a far-field asymptotic representation for GWs generated by a load q, it is

enough to substitute expansion (5) into convolution (3) and to implement a cubature dis-
cretization over Ω :

u(x) =
Nr
∑

n=1
un(x)+O((ζ r)−1), ζ r → ∞

un(x) = h2
N j

∑
j=1

Mn j

∑
m=1

bnm(φ j,z)q j eisnm jr j/
√

ζnr j.

(6)

Here q j =q(x j,y j), (x j,y j) are cubature nodes covering Ω with a spacing h; r j =
√

(x− x j)2 +(y− y j)2

and φ j : cosφ j = (x−x j)/r j, sinφ j = (y−y j)/r j; the stationary phase equations have to be
solved for every direction φ j, Mn j is a number of roots γm j for φ = φ j; snm j = sn(γm j).

Every terms of the second sum in Eq. (6) is nothing else than a cylindrical GW prop-
agating from the elementary source h2q jδ (x− x j,y− y j) with phase and group velocities
ω/snm j and (dsnm j/dω)−1. Their wavenumbers snm j = ζ(θm j)sinγm j depend on the direc-
tion of propagation φ , while with an isotropic sample γm j = π/2, and they degenerate into
the independent of φ poles ζn. Thus, the terms un are superpositions of guided waves gener-
ated by elementary sources located at the nodes x j = (x j,y j,0). They propagate with veloci-
ties which are approximately equal to those associated with the direction φ . At large enough
distances, when all the directions φ j become practically parallel to each other (φ j ≈ φ), one
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can obtain the more compact asymptotic representation

un(x)∼
Mn
∑

m=1
anm(φ,z)eisnmr/

√
ζnr, ζnr → ∞

anm = bnm(φ,z)Q(−snm,φ)
(7)

which is valid for relatively large distances in comparison with the size of Ω . These repre-
sentation is especially convenient when a close analytical form of Q(α,γ) is available.

The amplitude functions anm(φ,z) coincide to constant factors with the GW modal
eigenforms that may be derived using conventional modal analysis technique. The series
expansions (6) and (7) provide a computationally efficient and physically clear analytically-
based tool for GW analysis, which already accounts for the source influence on the host
structure through the vector-functions q(x,y) or Q(α,γ).

Transient wave fields u(x, t) generated by non-harmonic loads can be obtained via the
frequency spectrum u(x,ω) using fast Fourier transform (FFT) or B-spline approximate
integration in the frequency domain.

0.2

0.4

0.6

0.8

1

 

 

|ur,int|

|ur,a|

|ur,a|

1

2

x/H
0 20 40 60 80 100
0

10

20

%

 

|(ur,int -ur,a)/ur,int|*100%
1

|(ur,int -ur,a)/ur,int|*100%
2

Fig. 2 Radial displacements |ur(x,0,0)| versus the distance x/H from actuator calculated via numerical in-
tegration (4) and using asymptotics (6) and (7).

To illustrate the applicability of expressions (6) and (7), let us consider a time-harmonic
oscillation of a transversally isotropic layer of the thickness H = 1 mm with fibers oriented
along the x axis, the elastic properties taken from paper [28]: C11 = 130.7, C12 = 5.2, C22 =
13.0, C23 = 4.5, C55 = 6.0 (GPa), and ρ = 1578 kg/m3. The elastic constants are given here
in the conventional two-index Voigt notation. A ring delta-like distribution of a surface radial
tension τr serves as a surface load:

q = τr(δr(r−a)cosφ , δr(r−a)sinφ). (8)

The latter is proved to be a suitable approximation of thin piezopatch action on a plate
structure in the frequency range below 500 kHz-mm [5, 20]. Figures 2(a) and 3(a) display
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Fig. 3 Out-of-plane displacements |uz(x,0,0)| versus the distance x/H from actuator calculated via numerical
integration (4) and using asymptotics (6) and (7).

the plots of normalized radial and out-of-plane amplitudes |ur| and |uz| versus the distance
x/H from the center of the ring source (8) with a radius of a = 8 mm at a frequency of
f = 103/(2π) kHz, the s0 and a0 wavelengths are λs = 57.0 mm and λa = 8.3 mm, respec-
tively. The calculations were performed using Eq. (4) (|ur,int | and |uz,int |, solid lines), Eq. (6)
(|u1

r,a| and |u1
z,a|, dashed lines, points (x j,y j) are evenly spaced along the ring) and Eq. (7)

(|u2
r,a| and |u2

z,a|, dashed-dotted lines). It should be noted that in this example, the symmetric
mode s0 predominates in the radial displacements, while the antisymmetric mode a0 - in
the out-of-plane ones. Additionally, relative discrepancy (in percents) between the integral
and asymptotic values are given in the bottom subplots. One can see a good agreement of
the results which become better as the distance x/H increases, going down beneath the 3%
level for x/H > 2λ of the corresponding mode. It is sufficient to mention that in the case
considered, the evaluation of |uint | in 250 points along the x axis takes about 12 minutes at
an ordinary laptop equipped with Intel Core i330M CPU. At the same time, the calculation
of |u1

a| requires 1 minute, while only 5 seconds are quite enough for |u2
a|.

3 Experimental setup

For experimental verification of the computer models developed, a carbon-fiber-reinforced
polymer (CFRP) plate manufactured by Carbotec GmbH with the lay-up [0o]4 and the di-
mensions 1000×1000×1.1 mm3 have been used. Elastic properties of the plate except the
density ρ = 1482 kg/m3 were initially unknown and thus had to be estimated beforehand.

The plate is driven by a circular vertically polarized piezoceramic actuator (provided
by PI Ceramic GmbH, PIC151 ceramic) glued to its surface (radius of the electroded area
a = 7.8 mm, thickness b = 0.25 mm). The velocity field of propagating waves is measured
by means of a Polytec PSV-400 scanning laser vibrometer coupled with a Tektronix TDS
1012B two-channel digital storage oscilloscope. The scanning head of the PSV-400 system
is placed 1.32 m above the specimen. A thin reflective film is glued to the surface of the
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Fig. 4 Sketch of the experimental setup: (a) side view and (b) top view

plate in the area of observation, which is proved to be a suitable tool for improving the laser
beam reflection and minimizing the signal-to-noise ratio.

In the frequency range below 160 kHz-mm the actuator is excited by a sine windowed
two-cycle sine tone-burst, which at higher frequencies is changed by a five-cycle Hann win-
dowed sine signal in order to provide a narrower frequency support. For this purpose a
Tektronix AFG 3022B two-channel arbitrary signal generator is used. The generated signal
is 100 times amplified (Develogic WBHV 2A600 amplifier) to reach the amplitude 145 Vpp
before it is applied to the actuator. To obtain the frequency response in various propagation
directions the actuator is driven by a periodic chirp generated by the vibrometer hardware
and covering the range from 10 kHz to 350 kHz. The FFT is then applied to the measured
signals. The sketch of the plate used in the experiments is given in Fig. 4.

4 Reconstruction of material properties

There exist various techniques for measuring elastic properties of composite materials. Con-
ventional approaches like tensile, compressive and shear tests are destructive in nature and
non-capable to reconstruct all the elastic moduli. Vibration-based and ultrasonic approaches
are more advantageous over the conventional techniques due to their nondestructive manner
and a possibility to estimate several moduli simultaneously. Experimentally obtained vibra-
tion eigenfrequencies are used for the prediction of composite mechanical properties [15],
while the ultrasonic techniques utilize either elastic bulk waves or guided Lamb waves.

It was shown that ultrasonic bulk wave velocities are insensitive to a variation of some
material constants [26] and, consequently, not all of the elastic moduli can be reconstructed
using the bulk waves. Another limitation, typical for both bulk wave and vibration-based
methods, is that they require specially prepared samples, whereas the Lamb wave based
methods may be directly implemented to the engineering structure under investigation.

Based on the mathematical model described above, an algorithm for the determination
of effective elastic constants of fiber-reinforced plates has been developed and applied to the
plate under study. This algorithm is close to that described in papers [21, 27]. It consists in
the minimization of discrepancy between the theoretically calculated and experimentally
measured dispersion curves in the course of constants Ci j variation. Unlike to the cited
works, where phase velocities were used, the group velocities of fundamental antisymmetric
(a0) and symmetric (s0) Lamb waves measured along the symmetry axes of the composite at
varying excitation frequencies serve as a data input to the inverse identification. In addition,
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of course, it differs by the use of analytically-based tools described above for the objective
function calculation. The plate is modeled as a single transversally isotropic layer with fibers
oriented along the x axis, so that 5 independent effective elastic moduli are to be estimated,
namely, C11, C12, C22, C44 and C55.

The algorithm consists of the following steps:
1. Guided waves are generated via the piezoactuator excited by the windowed tone-bursts
of varying central frequencies. The out-of-plane velocities vz(x,y,0, t) are measured with
the laser vibrometer along the fiber orientation direction (points A2(100,0), A3(150,0) and
A4(200,0), Fig. 3(b)) and in the perpendicular one (points B2(0,100) and B3(0,150)). These
directions have been utilized for measurements due to sensitivity reasons, e.g., in the fre-
quency range of interest, the velocities of a0 and s0 modes along the x axis depend mainly
on C11 and C55 moduli, while the parameters C22 and C44 are responsible for the perpendic-
ular direction [13].
2. In order to extract group velocities from the obtained transient signals, they are processed
with the Gabor wavelet transform. It has been shown that the arrival times of wave pack-
ages at each local frequency can be extracted by using the magnitude peaks of the wavelet
coefficients [12]. The a0 and s0 group velocities are received by dividing the propagation
lengths (the distances between the center of actuator and the measurement points) by the
corresponding arrival times. The obtained values are then averaged along the specific direc-
tion.
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Fig. 5 Measured and theoretically calculated with the restored elastic constants group velocity dispersion
curves (in m/s) for a0 and s0 modes along the fibers (upper plot) and in the perpendicular direction (bottom
plot).

3. At the next step, the objective function is constructed in the form

ERR(C) =
N

∑
j=1

a2
j(v

m
g, j − vc

g, j)
2, (9)

where C is a candidate matrix of material constants Ci j constrained by some initially pre-
scribed boundary values: Cmin ≤ C ≤ Cmax, vm

g and vc
g are measured and computed group
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Fig. 6 Measured and theoretically restored angular dependences of the a0 group velocity for f = 4 kHz and
f = 20 kHz.

velocities, N is the total amount of measured velocities (both for a0 and s0 modes); a j =
vmax/vm

g, j are normalizing coefficients, vmax = max(vm
g, j), j = 1,2, ...,N. To calculate the val-

ues of vc
g, the first real poles ζn(γ), n = 1,2, ...,Nr of the Green’s matrix Fourier symbol

K(α,γ) are traced using dichotomy technique and refined with Muller’s method. After that,
the group velocity vector is calculated using the formula [28]:

vg =

(
vgx
vgy

)
=

[
cosγ −sinγ
sinγ cosγ

](
∂W/∂α

∂W
α∂γ

)
,

in which ω = W (α,γ) is the dispersion equation derived in terms of matrix K(α,γ,z) ele-
ments.
4. Since objective (9) is a sum of the least-square errors between the measured and calcu-
lated data, it has to be minimized. For this purpose a real coded micro-genetic algorithm
(µGA) [14] with a simulated binary crossover [4] is applied. Every individual chromosome
represents a candidate solution (matrix C). Thus the sum ERR(C) is its fitness value.

After numerical testing of this algorithm on a composite with initially known properties,
it has been applied to the investigated specimen and the following approximate values for
the elastic moduli have been obtained (in GPa):

C11 = 95.93, C12 = 3.57, C22 = 9.61, C44 = 3.0, C55 = 3.3.

or in terms of engineering constants:

E1 = 94.0GPa, E2 = 8.2GPa, µ12 = 0.27, G23 = 3.0GPa, G12 = 3.3GPa

Figure 5 depicts measured and theoretically restored group velocities of a0 and s0 modes
versus frequency for both x and y directions. Figure 6 shows angular dependencies of a0
group velocity at the two frequencies f = 4 kHz and f = 20 kHz, while Figure 7 depicts
calculated and measured a0 wavelengths along the x and y axes versus frequency. A con-
ventional approach based on two-dimensional time-spatial Fourier transform [1] has been
utilized for obtaining the experimental wavelengths. In all the cases a good coincidence with
the total error less than 5% is obtained.
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Fig. 7 Measured and theoretically restored a0 mode wavelength dispersion curve (in mm) along the fibers
(upper plot) and in the perpendicular direction (bottom plot). The axes are in a logarithmic scale.

Moreover, to verify the obtained results, destructive tensile tests have also been per-
formed by M.-N. Neumann (Institute of Mechanics, Helmut-Schmidt-University, Hamburg).
The following values of Young moduli have been obtained: E1, t = 105.7 GPa and E2, t = 7.5
GPa. These values are in a good qualitative agreement with the restored effective elastic
moduli above. A slight quantitative difference in the direction along the fibres may be ex-
plained by a certain inaccuracy in the s0 group velocity LDV measurement due to a relatively
small out-of-plane amplitude of this mode.

5 Radiation directivity and frequency tuning

Theoretical and experimental investigations of unidirectional and cross-ply laminates driven
by circular piezoelectric actuators [7, 17] have shown that unlike to the point source case,
the main radiation lobe periodically alternates either along the upper-ply fibers or in the
perpendicular direction in the course of frequency or source diameter variation. The al-
ternation takes place only with sized source. It can be theoretically explained through the
in-phase or out-of-phase interaction of wave packages generated by the opposite actuator’s
edges. Therefore, due to the angular variation of the GW wavelengths caused by the material
anisotropy, the so-called tuning frequencies [6] become also angle dependent. At such fre-
quencies a piezosensor registers a maximum amplitude ratio between the s0 and a0 modes.
With a 1D laser vibrometry, these frequencies are equal or close to those where the a0 mode
has local peaks.

To understand the influence of material anisotropy on the GW directivity, the points
A1 and B1 (Fig. 3) in the directions along and across the fibers have been selected for the
frequency response measurement and simulation. The plots of the notmalized out-of-plane
velocity magnitude |vz|= ω|uz| measured and computed at these points are shown in Fig. 6.
The theoretical results depicted by the dashed lines are obtained using Eq. (6). One can see



12 Evgeny Glushkov et al.

a good agreement of the predicted and measured optimal frequencies. The curves exhibit
alternations of minima and maxima typical for dimensional sources [6, 8]. In distinction
to the isotropic case, the frequencies of local minima and maxima of these curves do not
generally coincide due to the difference in modal wavelengths along and across the fibers.
Correspondingly, the optimal central excitation frequencies fc varies with propagation di-
rections.
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90 
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experiment

Fig. 8 Frequency spectrum of the out-of-plane velocity amplitudes |vz| at the points A1 (top) and B1 (bottom);
experimental measurements (solid line) and theoretical simulation (dashed line). The upper plot refers to the
direction along fibers, the bottom plot is for the perpendicular one.

To illustrate how a proper choice of fc influences on the wave propagation patterns, the
experimental and predicted transient out-of-plane normalized velocities vz(x, t) at the points
A2 and B2 are adduced in Fig. 7. In the subplots (a) and (b) the actuator is driven with a sine
windowed two-cycle sine tone-burst, while (c) and (d) subplots show results of a five-cycle
Hann windowed sine signal. The viscosity is implicitly taken into account in Eq. (6) or (7)
by introducing new exponents s⋆nm = snm− ibω , where b is a small real constant different for
the directions along and perpendicular to the fibers (b = 0.01− 0.02 and b = 0.04− 0.06,
respectively); here snm := snm ∗H and ω = 2 ∗π ∗ f ∗H/cT are dimensionless parameters
used in calculations, cT = 1000 m/s is a unit of velocity.

As it was expected [8], the a0 wave packages excited at the frequencies where local
maxima of |vz| occur (subplots (b) and (c)) propagate without visible dispersion. On the
contrary, in two other cases the contribution of the central frequency fc is suppressed and
the frequency spectrum is actually broken down into two independent parts with new central
frequencies on each side of fc. As the result, the wave packages in subplots (a) and (d) be-
come blurred, tending to split into two separate packages propagating with different group
velocities. At these frequencies and directions, the dispersion curves are poorly restored
from experimental data. It should be also noted that in the low-frequency range the max-
imum in one of the directions occur almost at the minimum of the counterpart one. Thus,
selecting, for example, the frequency fc = 65 kHz as a global optimum for the whole plate
monitoring, one can acquire signals of poor quality in the fiber direction.
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Fig. 9 Influence of propagation directions and central excitation frequencies on the transient normalized
out-of-plane velocities vz(x, t) recorded and calculated at the points A2 and B2.

6 Conclusion

The experimentally validated integral and asymptotic representations derived based on the
Green’s matrix concept have been proved to be an efficient tool for low-cost computer mod-
eling of forced wave dynamics of laminate anisotropic composite structures, in particular,
in the interests of ultrasonic guided wave structural health monitoring.
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