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Abstract. Previous theoretical and computational investigations have shown

high efficiency of the local Green’s function method for the numerical solution

of singularly perturbed problems with sharp boundary layers. However, in sev-

eral space variables those functions, used as projectors in the Petrov-Galerkin

scheme, cannot be derived in a closed analytical form. This is an obstacle for the

application of the method when applied to multi-dimensional problems. The

present work proposes a semi-analytical approach to calculate the local Green’s

function, which opens a way to effective practical application of the method.

Besides very accurate approximation, the matrix stencils obtained with these

functions allow the use of fast and stable iterative solution of the large sparse

algebraic systems that arise from the grid-discretization. The advantages of

the method are illustrated by numerical examples.

Key Words. Convection-diffusion equation, Petrov-Galerkin discretization,

Fourier transform, integral equations, iterative solution.

1. Introduction

Singularly perturbed problems are generally acknowledged to be a hard task for
numerical evaluation. Due to their solutions having sharp boundary and interior
layers severe numerical instability can occur and a large error pollution spreads out
over the whole domain as the perturbation parameter tends to its limit value.

A classical example of a singularly perturbed equation is the equation of the
convection-diffusion problem:

(1.1) Lu ≡ −ε∆u + b · ∇u + cu = f, (x, y) ∈ Ω ⊂ R2

where ε is a small parameter and c ≥ 0. Here we denote scalar products of algebraic
vectors by dots, as in the convection term b · ∇u, while the brackets notation is
reserved for the scalar products in the functional Hilbert spaces occurring below.
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For the sake of definiteness let us consider a rectangular domain Ω : 0 ≤ x ≤
a1, 0 ≤ y ≤ a2 with homogeneous Dirichlet boundary condition

(1.2) u|Γ = 0, Γ = ∂Ω.

Only the presence of the diffusion term −ε∆u enables fulfillment of this condition
at the outflow part Γ− of the boundary Γ entailing a boundary layer of width O(ε)
near Γ− (here Γ− = {(x, y) ∈ Γ : b · n > 0}, n is an outward normal to ∂Ω).

It is well known that if the standard Galerkin method, or the similar central
difference method, is used in regions where layers occur, then unphysical oscillations
arise. They can be suppressed by the use of a locally and significantly refined grid
where a certain local Peclét number condition is satisfied [3]. Instead of the standard
Galerkin method, the streamline upwind method (see [15]) is a popular method to
stabilize the scheme. One more alternative to the Galerkin scheme, applicable to
singularly perturbed problems, is the meshless local Petrov-Galerkin method [2].

Other methods used are related to the local characteristic line method, which is
based on the property that away from the layers the solution follows narrowly the
characteristic lines for the reduced equation (ε = 0), when ε is small. Using such
methods with a proper locally refined grid, under certain assumptions regarding the
influence of corner singularities, one can prove optimal order discretization error
estimates, typically of O(h2), which hold uniformly in the singular perturbation
parameter, see [4, 8, 18]. Other and related papers can be found in [16].

Among the variety of approaches to regularization of singularly perturbed prob-
lems there is a group of methods based on the use of Green’s functions associated
with the equations considered. Different kinds of Green’s functions are used for
preconditioning [12] or for construction the fine-scale spaces in the multiscale sta-
bilized methods [9]. The present paper deals with the method [5], which may be
considered as a special case of the approach [2] with the local Green’s functions
used as projectors (test space). In distinction to the global Green’s functions used
in [12], the local ones are set on elementary supports defined by discretization.
On the other hand, unlike to the fine-scale Green’s functions of the multiscale de-
composition methods, they are connected with a coarse mesh and do not possess,
therefore, the property to provide an hierarchical exact basis of the infinitely di-
mension fine-scale spaces. Nevertheless, the local Green’s functions also provide
the stabilization effect by accounting indirectly for the fine-scale behavior. In this
regard the method proposed may be treated as a specific implementation of the
multiscale decomposition theory [10].

Let us give the main idea of the presented approach with a simple example of a
uniform grid approximation. Let

(1.3) uh(x, y) =
N∑

k=1

ukϕk(x, y)

be an expansion of the exact solution of the problem (1.1) and (1.2) in terms of
basis functions ϕk = ϕ((x−xk)/h, (y−yk)/h) defined at the interior nodes (xk, yk)
of a grid covering Ω with a step h (Fig. 1); ϕ(x, y) is a shape-function. In line with
the Petrov-Galerkin scheme, the unknown coefficients uk are determined from the
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variational condition

(1.4) (Luh − f, ψl) = 0, l = 1, 2, ..., N,

where the set of projectors {ψl}N
l=1 is dense as N → ∞ in the Hilbert space with

the scalar product of eq. (1.4). We take here the L2 space with the product
(f, g) =

∫∫
fg∗dxdy (an asterisk, hereinafter, will indicate complex conjugate values

and adjoint operators).
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Figure 1

Using the adjoint operator L∗ : (Lu, v) = (u,L∗v) the variational equality (1.4)
can be converted into the form

(1.5) (uh − u,L∗ψl) = 0.

If the shape-function ψ of the projectors ψl = ψ(x − xl, y − yl) complies with the
equality

(1.6) L∗ψ = δ, (x, y) ∈ ω

where δ(x, y) is Dirac’s delta-function, then it follows from (1.5) that the approxi-
mate and the exact solutions coincide at the nodes:

(1.7) uh(xl, yl) = u(xl, yl).

In eq. (1.6) ω is a finite support of ψ. For a uniform grid projectors ψl are localized
in 2h × 2h squares centered at the nodes (Fig. 1), i.e. in such a case ω = ωh is a
square |x| ≤ h, |y| ≤ h. In accordance with the general scheme ψ must satisfy the
natural boundary condition

(1.8) ψ|Γh
= 0,

where Γh is the boundary of ωh.
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With equation (1.1) integration by parts yields

(1.9) (L(uh − u), ψ) = (uh − u, L̂ψ) +
∮

∂ω

ε
∂ψ

∂n
(uh − u)dΓh

where L̂: L̂u = −ε∆u − ∇ · (bu) + cu is the main differential part of L∗. The
operator L∗ cannot be written here explicitly, so the local Green’s function ψ is
defined as a solution of the equation

(1.10) L̂ψ = δ, (x, y) ∈ ωh

with the boundary condition (1.8) [3].
In practice the local Green’s function method exhibits high accuracy at the nodes

even with a coarse grid. It is further of significant importance that appearance of
the layers as ε → 0 does not degrade its numerical stability. Besides the theoretical
heuristic calculations above, this fact was shown numerically as well, however, only
with 1D examples [7, 3]. Extension of the method to several variables has been re-
strained by the absence of an analytical solution of the problem (1.10), (1.8) for such
a case. The present work gives an example of an effective computer implementation
of the method in 2D by using a semi-analytical Fourier-transform technique.

It is pertinent to note that the local Green’s function can be given not only in
a square. Since its main property is to give a delta-function in eq. (1.5), we can
vary the shape of ωh regardless of supports of trial functions. It is only important
to set the test local Green’s functions at points, where coincidence (1.7) should be
achieved.

We start from the square support ωh, which goes together with a uniform grid
discretization, just to demonstrate that the method works and works well without
any mesh refinement in the layer parts of the domain. If more points within a layer
are desirable, one can take, for example, rectangular supports with arbitrary large
aspect ratio. This allows one to adjust the mesh in the layers along straight lines to
become arbitrarily thin along the layer. The generalization of the technique given
below on such a case is obvious. It would only require to use two mesh values h1, h2

instead of h in eqs. (2.8) – (2.15) and further on.
As the most promising with a non-uniform (non-polygonal) mesh we mention

the use of circle and elliptic supports. Solution of integral equations at ∂ω and
derivation of integral’s asymptotics as ε → 0 (see Section 2) can be much easier for
such subdomains with smooth boundaries than for polygonal elements with corner
points.

In this paper we give, first, an idea of the technique proposed with an 1D example
(subsection 2.1), extending then its application to the 2D case (subsection 2.2). The
local Green’s function ψ(x, y) is derived in terms of integrals with respect to the
unknown normal derivative ∂ψ/∂n at Γh. The latter, in turn, is approximated by
orthogonal polynomials. Then, in Section 3, we derive the computational formulae
for the Petrov-Galerkin method arriving at a matrix stencil also expressed in terms
of ∂ψ/∂n. Some numerical test examples are given in Section 4. Finally, stability
bounds and a hybrid method are discussed in Section 5.
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2. Integral representation of the local Green’s functions

For an efficient derivation of the local Green’s functions we use the Fourier trans-
form technique. The Fourier transform pair

(2.1)





F [u] ≡ ∫
Rn

u(x)eiα·xdx = U(α)

F−1[U ] ≡ 1
(2π)n

∫
Rn

U(α)e−iα·xdα = u(x)

x = (x1, x2, ..., xn), α = (α1, α2, ..., αn), α · x =
n∑

i

αixi

can only be applied to differential equations with constant coefficients. However,
since the discretization step h is assumed to be much smaller than the characteristic
scales of the variation of the coefficients, we can approximate b(x) and c(x) in eq.
(1.1) by piece-wise functions, which are constant within element subdomains (the
so called freezing coefficients concept). In this case we take ∇ · (bψ) = b · ∇ψ with
b = const in eq. (1.6). By virtue of the variational statement of the problem, below
we treat operator F as a generalized Fourier transform applicable to distributions
(Dirac’s δ-functions) as well.

2.1. 1D case. To get an idea of the method proposed, let us first apply the trans-
form to the 1D two-point problem (1.6), (1.8), whose solution is actually easily
derived by other means, as well. Application of the transform presumes that a
function is defined in the whole space Rn, so we extend ψ(x) to the exterior of
the interval |x| ≤ h by zero. In this case the points x = ±h are the points of
discontinuity for derivatives ψ(m)(x),m ≥ 1 (ψ(x) is continuous due to the bound-
ary condition (1.8): ψ(±h) = 0). Fourier transform of derivatives of non-smooth
functions obeys the following rule:

F [u(m)] = (−iα)mU(α) + (um−1 − iαum−2 + ... + (−iα)m−1u0)eiαx0 ,

where U(α) = F [u], x0 is a point of discontinuity and uk = limδ→0[u(k)(x0 −
δ) − u(k)(x0 + δ)], 0 ≤ k ≤ m − 1 are values of the jumps of the derivatives at x0.
Therefore, the Fourier transform brings (1.6), extended by zero onto the whole axis,
to the functional equation

(2.2) F [L̂ψ] = L(α)Ψ(α)− v+eiαh + v−e−iαh = 1.

Here, L(α) = εα2 + iαb + c; v± = εψ
′
(±h∓ 0) are unknown constants, which have

to be taken to meet the boundary conditions ψ(±h) = 0.
From (2.2) we get immediately

Ψ(α) = G(α)(1 + v+eiαh − v−e−iαh), G(α) = 1/L(α),

and then

(2.3) ψ(x) = F−1[Ψ(α)] = g(x) + v+g(x− h)− v−g(x + h),

where

(2.4) g(x) = F−1[G] =
1
2π

∞∫

−∞
G(α)e−iαxdα
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is the global Green’s function of (1.6) in 1D.
An explicit representation of g(x) is easily derived from the integral (2.4) by

means of the residual technique for path integrals. There are two pure imaginary
poles of G(α) (roots of the denominator L(α) = ε(α − ζ1)(α − ζ2)) located in the
upper and lower half-planes of the complex plane α :

ζ1,2 = i(−b±
√

b2 + 4εc)/2ε

In accordance with Jordan’s lemma and Cauchy’s theorem [13], the contribution
of the residuals at poles ζ1 for x ≤ 0 and ζ2 for x ≥ 0 yields

(2.5) g(x) =
i

ε(ζ1 − ζ2)

{
e−iζ1x, x ≤ 0
e−iζ2x, x ≥ 0

}
∼ 1

b

{
ecx/b, x ≤ 0

e−(b2+cε)x/εb, x ≥ 0

}

as ε → 0. For small ε, the function g(x) demonstrates a typical layer behaviour at
the right (upwind) side of the source-point x = 0 and an independent of ε decrease
for x < 0 (the dash-point line in the example shown in Fig. 2). Consequently, in
(2.3) the term g(x+h) has a layer at x = −h while g(x−h) does not contribute to
any sharp layer of ψ(x) (dashed lines). After fixing the values v± from the condition
ψ(±h) = 0, the total plot of ψ(x) takes the form shown by the solid line in Fig. 2.
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Figure 2. 1D local Green’s function

It may seem attractive to design ψ(x) in 2D using 1D functions of the form (2.3)
taken, for example, along the characteristics of L̂. However, it cannot be performed
analytically. Moreover, since in several variables x = 0 is a singular point (with
a logarithmic singularity in 2D: g(x) ∼ g0 ln |x|, as |x| → 0), any approximation
by such functions would be qualitatively mismatched. Special methods for ψ(x)
designed in Rn, n ≥ 2 must therefore be developed.
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2.2. 2D case. Similarly to the above, application of the Fourier transform to
(1.6) in the entire space R2 yields the explicit integral representation for the global
Green’s function g(x, y) :

(2.6) g(x) =
1

(2π)2

∫ ∞∫

−∞
G(α)e−iα·xdα, G(α) = 1/L(α),

L(α) = ε|α|2 + iα · b + c.

It, however, can be simplified to one-fold integrals only:

(2.7) g(x, y) =
1
2π

∞∫

−∞





G1(α2, x)e−iα2ydα2, |x| ≥ |y|

G2(α1, y)e−iα1xdα1, |y| ≥ |x|





Gn(α, xn) = exp [−(bnxn + dn|xn|)/2ε]/dn, n = 1, 2

dn(α) =
√

b2
n + 4ε(εα2 + ib̂nα + c), b̂n =

{
b2, n = 1
b1, n = 2

(whenever no confusion can arise, we write α instead of α1 or α2 for the components
of α and x, y instead of x1, x2 for the x ones). Further simplification of these
integrals in line with the residual technique is impossible due to the branch points
of dn(α) and the branch cuts implied in the complex plane α, although a close
analytical form of g(x, y) has been derived by other way as well [14].

When r =
√

x2 + y2 → 0, as expected, these integrals become divergent in
accordance with the logarithmic singularity of g(x, y).

We remark that selection of the integrals in (2.7) depending on the |x|, |y| ratio
is not mandatory. It only provides its faster convergence at infinity (as α →∞).

If ψ is considered to be extended by zero from ωh onto the whole plane R2, eq.
(1.10) takes in the Fourier transform domain the following form:
(2.8)
Ψ(α) = G(α){1 + V +

x (α2)eiα1h − V −
x (α2)e−iα1h + V +

y (α1)eiα2h − V −
y (α1)e−iα2h}.

Here V ±
x = F [v±x ] and V ±

y = F [v±y ], where v±x (y) and v±y (x) are unknown nor-
mal derivatives ε∂ψ/∂x and ε∂ψ/∂y at the square sides x = ±h and y = ±h,
respectively. Fourier inversion of (2.8) implies

(2.9) ψ = g + u+
x − u−x + u+

y − u−y

with functions
(2.10)




u±x (x, y) = 1
2π

∞∫
−∞

G1(α, x∓ h)V ±
x (α)e−iαydα =

h∫
−h

g(x∓ h, y − t)v±x (t)dt

u±y (x, y) = 1
2π

∞∫
−∞

G2(α, y ∓ h)V ±
y (α)e−iαxdα =

h∫
−h

g(x− t, y ∓ h)v±y (t)dt

expressed in terms of the unknown v±x and v±y .
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In view of boundary condition (1.8), these unknowns have to comply with the
integral equations

(2.11)





(u+
x − u−x + u+

y − u−y )|x=±h = −g(±h, y), |y| ≤ h

(u+
x − u−x + u+

y − u−y )|y=±h = −g(x,±h), |x| ≤ h

A semi-analytical solution of these equations can be obtained in terms of certain
basis functions pk(t), |t| ≤ h :

(2.12)





v±x (y) =
∞∑

k=0

c±k pk(y), |y| ≤ h

v±y (x) =
∞∑

k=0

t±k pk(x), |x| ≤ h

if Galerkin’s scheme of discretization is applied to (2.11).
Since the unknowns are expected to be continuous functions, the usual Fourier

exponents e±iπkt/h or splines are quite acceptable as a basis. However, orthogonal
polynomials with a weight accounting for the behaviour at the ends of the approxi-
mation interval provide generally a better convergence. For the numerical examples
below we have selected pk(t) = (h2− t2)P (1,1)

k (t/h) as the basis and ql(t) = Pl(t/h)
as test functions (P (α,β)

k (x), Pl(x) are Jacobi’s and Legendre polynomials [1]).
Galerkin’s variational procedure reduces eqs. (2.11) to the linear algebraic sys-

tem

(2.13)
M∑

k=0

Alktk = fl, l = 0, 1, 2, ..., M

for the unknown expansion coefficients tk = {c+
k , c−k , t+k , t−k }; M fixes the number

of terms kept in expansion (2.12). With the basis and projectors selected the 4× 4
matrix-blocks Alk and the right-hand side vectors fl take the following form

(2.14) Alk =




a1,lk(0) −a1,lk(2h) b+
2,lk(h) −b−2,lk(h)

a1,lk(−2h) −a1,lk(0) b+
2,lk(−h) −b−2,lk(−h)

b+
1,lk(h) −b−1,lk(h) a2,lk(0) −a2,lk(2h)

b+
1,lk(−h) −b−1,lk(−h) a2,lk(−2h) −a2,lk(0)




fl = [f+
1,l f−1,l f+

2,l f−2,l]
T

where

(2.15)





an,lk(2p) = 1
2π

∞∫
−∞

Gn(α, 2p)Pk(α)Ql(α)dα

b±n,lk(p) = 1
2π

∞∫
−∞

e±n (α)Pk(α)Ql(z±n )e−iαpdα

f±n,l = − 1
2π

∞∫
−∞

Gn(α,±h)Ql(α)dα
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p = 0,±h; n = 1, 2; z±n = i(±dn − bn)/2ε

e±n (α) = exp((−dn ± bn)λ/2)/dn, λ = h/ε

Gn(α, xn), dn(α) as in eq. (2.7);

Pk(α) = F [pk] = ik4(k + 1)h2jk+1(αh)/α

Ql(α) = F [ql(α)]∗ = i−l2hjl(αh);

jm(z) =
√

2π/zJm+1/2(z) are spherical Bessel functions [1].
Despite the fact that integrals (2.15) are improper ones given over an infinite

interval, due to factors like e−dnλ their convergence is very fast, although certain
a priori analytical calculation aiming to adjust them to the numerical integration
has to be carried out. Moreover, if ε ¿ 1 and, consequently, λ = h/ε is very large,
the exponential behavior of the integrands permits very good approximation of the
integrals by saddle point asymptotics, derived using the steepest descent method
[6].
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Figure 3. 2D local Green’s function

An example of the shape function ψ(x, y) computed in line with the scheme
above for ε = 0.001, h = 0.05, c = 1 and a diagonal velocity field b = {√2,

√
2}/2 is

given in Fig. 3. Similar to the 1D example above one can see a sharp decrease at
the upwind side of the source-point x = 0 and boundary layers at the outflow part
of the edges x = −0.05 and y = −0.05 (for the backward flux −b associated with
the adjoint operator L̂). The growth in accordance with the logarithmic singularity
at x = 0, which does not appear in the 1D case, is also clearly seen here.
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However, it is important to note the fact that we do not need ψ(x, y) itself,
but due to the integral technique used, the matrix stencil we seek can be obtained
merely in terms of the auxiliary functions v±x and v±y .

3. The matrix-stencil

The variational equality (1.4) results in an algebraic system

(3.1)
N∑

k=1

alkuk = fl, l = 1, 2, ..., N,

where alk = (Lϕk, ψl), fl = (f, ψl), and uk are unknown coefficients in expansion
(1.3). The generalized Parseval’s identity (f, g) = 1

(2π)2 (F, G) makes it possible to
evaluate the components alk in the Fourier transform domain:

(3.2) alk =
1

(2π)2
(F [Lϕk], Ψl).

Here F [Lϕk] = L(α)Φk(α) and Ψl(α) = F [ψl] = Ψ(α)ei(α1xl+α2yl), all the func-
tions are assumed to be extended by zero beyond their supports.

Let the basis shape-function ϕ be designed from the traditional hat functions:

(3.3) ϕ(x, y) = ϕ(x)ϕ(y), ϕ(t) =
{

1− |t|, |t| ≤ 1
0, |t| > 1

,

so that Φk(α) = F [ϕk] = h2Φ(α1h)Φ(α2h)ei(α1xk+α2yk) with Φ(α) = F [ϕ]. Since
the function G(α), involved in the representation (3.2) through Ψ(α) of form (2.8),
is the inverse to L(α) : L(α)G(α) = 1, this representation can be simplified to the
following form:

(3.4) alk = δ(l − k) + a+
lk,x − a−lk,x + a+

lk,y − a−lk,y,

where δ(p) =
{

1, p = 0
0, p 6= 0

is the Kronecker delta,

(3.5)





a±lk,x = δ(p1 ± 1)I±p2

a±lk,y = δ(p2 ± 1)J±p1

(3.6)





I±p2
=

h∫
−h

v±x (y)ϕ(y/h + p2)dy

J±p1
=

h∫
−h

v±y (x)ϕ(x/h + p1)dx

I±p2
, J±p1 ≡ 0 for |pn| ≥ 2, n = 1, 2

p1 = (xl − xk)/h, p2 = (yl − yk)/h, pn = 0,±1;

The restriction |pn| ≤ 1 means that only nodes (xk, yk) adjacent to (xl, yl) con-
tribute to alk. The structure of the three by three matrix-stencil B = [b(p1, p2)],
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fixing components alk in line with the rule alk = b(p1, p2), pn = −1, 0, 1, is therefore
easily seen:

(3.7) B =




I+
−1 + J+

−1 I+
0 I+

1 − J−−1

J+
0 1 −J−0

−I−−1 + J+
1 −I−0 −I−1 − J−1




This stencil structure follows also directly from the representation obtained by the
integration by parts (see (1.9)):

alk = (ϕk, L̂ψl) +
∮

∂ωl

ε
∂ψl

∂n
ϕkdΓl.

As soon as the expansion coefficients tk have been determined from the system
(2.13), calculation of the entries of the B-matrix through integrals (3.6) does not
take any major part in the total computing time.

Besides that, representation (3.7) is helpful for analyzing general properties of
the sparse-matrix A = [alk] with regards to iterative solution of system (3.1). Since
∂ψ/∂n < 0 at Γh (due to decrease of ψ from positive values to zero when approach-
ing to the edges) all entries of B, except b(0, 0) = 1, are negative. It results in
negative off-diagonal components of A, so that A is an M -matrix if it is diagonally
dominant [17] (see also subsection 5.1).

4. Numerical examples

4.1. Boundary layers. As an example let us consider problem (1.1) - (1.2) in the
unit square 0 ≤ x, y ≤ 1 with the right-hand side function f(x, y) generated by the
exact solution

(4.1) u(x, y) = x2y2(1− e1(x))(1− e2(y))

en(xn) = exp(−(1− xn)/ε), n = 1, 2 x1 = x, x2 = y

with boundary layers at the sides x = 1 and y = 1.
In actual computation f(x, y) was replaced by a piecewise function, so that the

components fl in system (3.1) were approximated as follows

fl = (f, ψl) ≈ f(xl, yl)
∫ ∫

ψldΩ = f(xl, yl)[1 + 4(c+
0 − c−0 + t+0 − t−0 )/3]/c

(if c = 0 the method is also applicable but with another form of the right hand side
fl).

The coefficients in (1.1) are assumed to be constant; c = 1 in all the cases. The
velocity vector b has unit length: |b| = 1, its direction is defined by the angle
θ : b = (cos θ, sin θ). In this case the Peclét number is equal to h/(2ε).

The examples given in the Tables 1 and 2 show how the matrix-stencil B and
the solution get stabilized as ε → 0, despite the sharp boundary layers occurring in
the exact solution (4.1).

In these tables elements of the matrix-stencil B, the number of Seidel iterations
for system (3.1), the average nodal error and the computing time are given de-
pending on the singular parameter ε. We keep only four digits in the elements of
B, so that zero ones are in reality small but non-zero. The number of iterations
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was determined by the relative accuracy 10−11. The error rh =
∫ |u − uh|dΩ is

approximated by the nodal sum: h2
∑
k

|u(xk, yk) − uh(xk, yk)|, h2 = 1/N . The

number of grid cells in these examples was N = 100 × 100, that is h = 0.01. The
number of expansion terms M (see eqs. (2.12, 2.13) in all examples was taken to
be equal to 10. Table 1 is for the velocity parallel to the x-axis: θ = 0, while table
2 is for θ = π/8.

The computations were carried out at a PC with the processor speed 733 MHz.
The increase of the total computing time for very small values of ε is due to the
costs of the numerical calculation of the integrals (2.15). As was mentioned above,
these computing expenses are practically reduced to zero (no more then 1 sec. for
ε ≤ 10−5 in the examples of Tables 1-3) when those integrals are replaced by their
asymptotic expressions derived in [6].

Table 1, θ = 0

ε matrix-stencil B number of error rh time
iterations

10−1

−0.0843 −0.1543 −0.0843
−0.1622 1.0000 −0.1622
−0.0909 −0.1705 −0.0909

990 0.0057 14 sec.

10−2

−0.0563 −0.0914 −0.0563
−0.1528 1.0000 −0.1528
−0.1196 −0.2485 −0.1196

301 0.0046 5 sec.

10−3

−0.0002 −0.0000 −0.0002
−0.0128 1.0000 −0.0128
−0.1596 −0.2485 −0.1596

40 0.0058 2 sec.

10−5

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0292 −0.9315 −0.0292

17 0.0030 6 sec.

10−7

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0255 −0.9389 −0.0255

16 0.0028 29 sec.

10−9

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0255 −0.9390 −0.0255

16 0.0028 113 sec.
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Table 2, θ = π/8

ε matrix-stencil B number of error rh time
iterations

10−1

−0.0834 −0.1549 −0.0858
−0.1591 1.0000 −0.1653
−0.0894 −0.1699 −0.0920

4950 0.0113 66 sec.

10−2

−0.0498 −0.0952 −0.0673
−0.1259 1.0000 −0.1846
−0.1011 −0.2397 −0.1336

282 0.0039 5 sec.

10−3

−0.0000 −0.0001 −0.0012
−0.0016 1.0000 −0.0743
−0.0454 −0.5184 −0.3490

21 0.0021 2 sec.

10−5

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0039 −0.5717 −0.4136

9 0.0030 7 sec.

10−7

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0050 −0.5695 −0.4147

9 0.0025 43 sec.

10−9

−0.0000 −0.0000 −0.0000
−0.0000 1.0000 −0.0000
−0.0050 −0.5695 −0.4147

9 0.0025 116 sec.

The next table demonstrates how convergence, accuracy and computing time
depend on the grid size h.

Table 3 for ε = 0.0001, θ = π/8

grid N1 ×N2 = N grid size h number of error rh total time
iterations

100× 100 = 104 0.01 6 0.00353 3 sec.
200× 200 = 4 · 104 0.005 9 0.00172 3 sec.
300× 300 = 9 · 104 0.0033 11 0.00100 8 sec.
400× 400 = 16 · 104 0.0025 20 0.00066 14 sec.
500× 500 = 25 · 104 0.0020 27 0.00036 25 sec.

4.2. Interior layers. The examples above show that the method behaves stably
despite the presence of boundary layers. However, since generally there were no
mesh points in the layers, it can make a false impression that the algorithm is only
applicable in regions where the reduced first order problem approximates the exact
solution. To demonstrate that it has the same favorable accuracy properties in
other regions we include the next test example with interior layers (Fig. 4). Here
the equation (1.1) is homogeneous (f ≡ 0) but with an inhomogeneous boundary
condition at the inflow part Γ+ instead of (1.2): u|Γ = u0 where u0 = 1 for x = 0,
0.25 ≤ y ≤ 0.5 and u0 ≡ 0 for the rest of Γ.

To take into account this inhomogeneous condition, we add a known function
u0,h: u0,h|Γ = u0 to uh of form (1.3). By doing so, the matrix [alk] of the system
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(3.1) remains the same, while u0,h only changes the right hand side into fl =
−(Lu0,h, ψl).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

XY

Figure 4. Test example with interior layers emanating from the
points of discontinuity of the boundary condition at the inflow side;
ε = 10−7, θ = π/8, h = 0.01.

As was expected, the numerical results show two interior layers along the charac-
teristic lines emanating from the points of discontinuity of u0 (0, 0.25) and (0, 0.5)
at Γ+ and a downstream boundary layer at the outflow side x = 1. It is seen, that
no unphysical oscillations occur and the method is able to model the behavior of
the exact solution accurately with no need to use any additional points in the layer
domain.

5. Analysis of the numerical procedures

In this section we survey various techniques relevant to the present study, to
prove stability and derive discretization error estimates. Since the rigorous error
estimation is still a challenging problem requiring elaborate procedures, it is a
subject of a separate publication. Here we restrict ourselves to heuristic explanation
of the uniform convergence and stability of the method. We comment also shortly
on the use of a hybrid method, i.e. a combination of the standard Galerkin and
Petrov-Galerkin methods. As we shall see, it is the Petrov-Galerkin part, with
proper test functions, which provides the stabilization of the methods.
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5.1. Stability bounds. We recall first stability bounds for approximations of the
problem (1.1) – (1.2). The first is associated with its variational formulation

(5.1) a(u, v) =
∫

Ω

fvdΩ, for all v ∈ H1
0 (Ω)

where

a(u, v) =
∫

Ω

(ε∇u · ∇v + b · ∇uv + cuv)dΩ,

and the norm
‖u‖1,ε := [ε|u|21 + ‖u‖2] 1

2 .

For these, coercivity

ρ‖u‖21,ε ≤ a(u, u) for all u ∈ H1
0 (Ω)

can be readily proven to hold with ρ = min{1, c0} (see e.g. [3]) if

(5.2) min
Ω

(c− 1
2
∇ · b) ≥ c0 > 0.

We shall assume that (5.2) holds and in addition, c ≥ 0 in Ω. As shown in [3],
even if the given velocity field b does not satisfy (5.2), it can hold for a properly
transformed differential equation. Together with the boundedness estimate

a(u, u) ≤ ‖f‖ ‖u‖,
it shows that there exists a unique solution, which satisfies ‖u‖1,ε ≤ 1

ρ‖f‖.
The other useful stability estimate follows from a local Green’s function ψi,

defined on the support ωi of the corresponding local basis function ϕi, associated
with the node xi:

(5.3)
L̂ψi = δ(x− xi), x ∈ ωi

ψi|∂ωi = 0

Assume that ψi is obtained explicitly from (5.3) in terms of normal derivatives
ε∂ψi

∂n |∂ωi in accordance with the scheme described in subsection 2.2. Then
∫

ωi
fψi dΩ =

∫
ωi
Luψi dΩ =

=
∫

ωi
(ε∇u · ∇ψi −∇ · (bψi)u + cuψi)dΩ +

∮
∂ωi

(
ε ∂u

∂n + b · nu
)
ψi = â(u, ψi),

where

â(u, v) =
∫

ωi

(ε∇u · ∇v −∇ · (b v)u + cuv) dΩ

Hence ∫

ωi

fψidΩ =
∫

ωi

(−ε∆ψi −∇ · (bψi) + cψi)u dΩ +
∮

∂ωi

ε
∂ψi

∂n
u,

or by (5.3),

(5.4) u(xi) +
∮

∂ωi

ε
∂ψi

∂n
u =

∫

ωi

fψidΩ, i = 1, . . . , N.

Let now u be approximated by bilinear finite element functions and let uh be
the corresponding approximation also satisfying (5.4). For simplicity, we assume
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that the integrals in (5.4) with u replaced by uh can be computed exactly. It can
be written in a matrix form

(5.5) GhUh = Fh

where Gh is the corresponding finite element matrix and Uh, Fh are the vectors
corresponding to the nodal values of uh and

∫
ωi

fψi, respectively. When uh is of
form (1.3), (3.3) and ωi are 2h×2h squares, we arrive naturally to the same system
(3.1) with matrix Gh = A = [alk] fixed by stencil (3.7).

If ‖G−1
h ‖∞ is bounded by a constant C, independent of the number of node

points and the aspect ratio of the elements, it follows from (5.5) that

(5.6) max
xi∈Ωh

|u(xi)| = ‖Uh‖∞ ≤ C‖Fh‖∞.

All numerical tests show that with c > 0 the matrix Gh is an M -matrix, so that
elements of G−1

h are bounded and non-negative. Analytically it can be proved for
a potential vector field b.

Theorem 5.1. If coefficients of equation (1.1),(1.2) satisfy the following conditions
in Ω:

1) c > 0
2) b is a potential vector field, that is, there exists a positive sufficiently smooth

scalar function ϕ such that b = ∇ϕ and ϕ|∂Ω ≥ 0
3) |b|2 ≥ b0 > 0
4) ∇ · b ≤ 0.
Then Gh is a diagonally dominant M -matrix and ‖G−1

h ‖ ≤ ‖ϕ‖∞
b0

.

Proof. Since ∂ψi/∂n ≤ 0 on ∂ωi, the off-diagonal entries of Gh are non-positive.
Diagonally dominant property follows from the fact that ϕ can be used as a barrier
function. Note that −∇ · b = −∆ϕ, therefore ϕ ≥ 0. Then

(5.7) Lϕ = −ε∆ϕ + b · ∇ϕ + cϕ ≥ |b|2 ≥ b0 in Ω.

As ϕ is a smooth function, it can be arbitrarily close approximated for sufficiently
small values of h by finite element approximations ϕh, where

a(ϕh, vh) = a(ϕ, vh) for all vh ∈ Vh.

This discretization satisfies then (approximately) the same bound as in (5.5) and,
in this case,

‖G−1
h ‖ ≤ ‖ϕh‖∞

b0
≤ ‖ϕ‖∞

b0
,

where, due to the maximum principle, ϕ is bounded. ¤

5.2. Uniform convergence and a hybrid approach: preliminary argu-
ments. To provide a proper background for the error estimation, we recall first
the standard Galerkin method, which takes the form

a(u, vh) =
∫

Ω

fvhdΩ

or
a(u− uh, vh) = 0, for all vh ∈ Vh ⊂ H1

0 (Ω),
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where Vh is a finite element space. To estimate the discretization error eh = u−uh,
we split it as eh = η− θh, where η = u− uIh

, uIh
is the interpolant to u on Vh and

θh = uh − uIh
. Then a(θh, θh) = a(η, θh) or, using coercivity,

ρ||θh||21,ε ≤ C[ε|η|21 + min{ε−1/2|η|, |η|1}2 + ||η||2].
This shows that

||θh||1,ε < Cmin{ε−1/2||η||1,ε2 , ||η||1}
and, by the triangle inequality,

||eh||1,ε ≤ Cmin{ε−1/2||η||1,ε2 , ||η||1}.
If u ∈ H1+ν(Ω), 0 < ν ≤ 1 and if Vh is spanned by piecewise linear basis functions,
we find then

||u− uh||1,ε ≤ Cmin{(ε1/2 + ε−1/2h)hν , hν}||u||1+ν .

In practice, however, due to boundary layers, the derivatives of the solution
grow typically as O(ε−1/2−ν) as ε → 0 and, unless h ≤ O(ε), this ε-dependence
causes unphysical wiggles in the numerical solution, which spread into the whole
domain. Therefore, one must use some cut-off weight function, which suppresses the
influence of the layer part. Exponential weight functions were used in [3] and more
general weight functions in [15] and [11]. It allows one to derive stable solutions
and estimates in the layer free domain of O(h), h → 0 which holds uniformly in ε.

An alternative way to handle these oscillations is to use a Petrov-Galerkin
method of the following form. Seek uh ∈ Vh such that

(5.8) â(uh, v
′
h) = â(u, v

′
h), for all v

′
h ∈ V

′
h ⊂ H1

0 (Ω),

where Vh is spanned by standard basis functions but V
′
h in general by other basis

functions. In particular, we are here interested in the case where V
′
h contains local

Green’s functions.
As we have seen, due to the upwind shape of the local Green’s functions, they

work as cut-off functions. In particular, it suffices to use them in the layer domain,
i.e. the Petrov-Galerkin method is used only there while the standard Galerkin
method is used in Ωint, the combination of them constituting a hybrid approach,
which stabilizes the method.

An alternative heuristic explanation of this effect can be given using the classical
Aubin-Nitsche duality argument. Given the solution uh of the (hybrid) Petrov-
Galerkin method in (5.7), we let ϕ be the solution of the adjoint equation,

L̂ϕ = u− uh in Ω,
∂ϕ

∂n
= 0 on ∂Ω

(assuming here for simplicity Dirichlet boundary conditions in (5.1)). Then
∫

Ω

(u− uh)2dΩ =
∫

Ω

L̂ϕ(u− uh)dΩ

and a calculation shows that

||u−uh||2 =
∫

Ω

[ε∇(u−uh) ·∇(ϕ−v
′
h)−∇·b(ϕ−v

′
h)(u−uh)+c(u−uh)(ϕ−v

′
h)]dΩ.
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We split the integral in two parts,
∫
Ω

=
∫
Ω0

+
∫
Ω1

, where Ω1 contains the boundary

layer and Ω0 = Ωint. The direction of the flow for the adjoint equation is opposite
to that of the given equation. Therefore, the function ϕ may have a layer at the
inflow boundary but not at the outflow for the primal problem. This means that,
locally, the factors u−uh and ∇· (b(ϕ− v

′
h)) and ∇(u−uh) and ∇(ϕ− v

′
h) can be

expected to balance each other in Ω0 and Ω1, respectively, so when one is big the
other is correspondingly small. If V

′
h contains fundamental solutions at an outflow

layer, the corresponding local error ϕ− v
′
h is ε-independent and may even be zero.

Hence, in this way, the boundary layers do not influence the global error.

6. Conclusion

For a 2D convection-diffusion problem we have demonstrated high practical effi-
ciency of the local Green’s function method (LGFM) for the numerical solution of
singularly perturbed problems when a semi-analytic technique of LGFs construction
is developed. We propose to use a Fourier transform technique, which yields the
LGFs in terms of 1D contour integrals with respect to the global Green’s function
and unknown normal derivatives at the boundary of LGF’s supports. Analytical
approximation of the latter in terms of orthogonal polynomials is derived from the
integral equations in line with the Galerkin scheme.

The grid-discretization with the LGFs leads to sparse algebraic systems with
M-matrices permitting the use of classical iterative solution methods. It becomes
clear that the smaller the singular parameter is, the faster the convergence of the
iterative solution is. In other words, the worse a singularly perturbed problem is,
the more effective is the LGFM application for the iterative solution. In doing so,
when an asymptotic calculation of the arising integrals is done, then the cost of
obtaining the matrix-stencil becomes practically negligible.

Another way to reduce the cost spent for the construction of the LGFs for each
mesh node with a variable coefficients problem is to use a hybrid method, where
the standard Galerkin scheme is used in the major part of the domain, while the
Petrov-Galerkin LGFM discretization is confined to subdomains where boundary or
interior layers occur. The LGFM suppresses the well-known unphysical oscillations,
which are inherent in the Galerkin method when it runs against the layer. Such a
hybrid scheme, suggested in [3] for 1D problems, has to work in a multidimensional
case as well.

For 3D problems the general scheme of the method remains the same. The
local Green’s function and the matrix-stencil are expressed in terms of unknown
normal derivative on the mesh element surface, which is obtained from the boundary
integral equations.
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