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1. Introduction

The development of structural health monitoring systems (SHM) which allow for

inspection of large areas of layered structures is an important issue in actual research.

Ultra-acoustic guided waves, especially Lamb waves, offer an attractive solution for SHM

systems [1, 2, 3, 4]. Lamb waves can propagate along shell and plate structures over

long distances as well as through their thickness and may be reflected by any defects.

In recent years thin piezoelectric ceramic wafers which are applied to the structure for

wave generation and signal acquisition became widely used for investigations of Lamb

waves. These piezoelectric actuators and sensors are cheap, easy to use and can also

become an integrated part of the monitored structure.

The definition of a proper model of the piezoactuator action on the elastic

host structure is an important issue in theoretical investigations of piezoelectrically

induced Lamb wave propagation. This action can be modeled using approximate pin-

force models [5] or through the strict solution of dynamic contact problems for thin
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piezoelectric elastic patches interacting with the underlying elastic structure [6, 7]. For

frequency-thickness product values below 800 kHz-mm theoretical and experimental

investigations of the simplified model applicability could be found in [8, 9, 10]. In

these papers a very good coincidence between experimental and computed piezosensor

response amplitudes is presented for a broad range of frequencies and different shapes

of piezoactuators. A comparison between experimental and theoretical sensor response

time domain signals for certain central frequencies is also given there.

Criteria for the selection of a proper central excitation frequency are of particular

interest in structural health monitoring. This parameter strongly depends on the

actuator size, material properties and signal sensing technique. In case of piezoelectric

transducers catching in-plane motion [8] and thus being sensitive to both symmetric and

antisymmetric modes, extensive numerical and experimental studies of the problem were

carried out for plates fabricated from isotropic materials (aluminium alloys) based on

simplified actuator model [11, 12]. Based on these investigations a conception of ’sweet

spot’ frequencies has been proposed. At such central frequencies the maximum peak of

wave amplitude ratio between the s0 and a0 modes in the sensor output is reached. It is

expected that such selection could minimize interference between different Lamb waves

and thus lead to easier sensor signal interpretation. Thorough investigations of this

phenomena in application to notch and crack detection in an aluminium narrow-strip

were performed in [13].

Recently, laser vibrometer technique has been identified as a powerful tool for Lamb

wave sensing. Basically, one scanning device allows to measure the out-of-plane velocity

utilizing the Doppler shift phenomenon [9, 10, 14]. At relatively low frequencies (below

the first cut-off frequency for a free elastic layer) the antisymmetric mode is mainly

visible, since in general, the s0 mode shows a significantly smaller velocity amlitude

than the a0 mode. Therefore another approach for the proper selection of the excitation

frequency and for the identification of so-called sweet spots is needed which is different

from the direct use of piezoelectric sensors. As a solution of this problem it is proposed

to perform signal excitation at central frequencies which are equal or close to those

where local peaks of a0 mode response are achieved.

Unfortunately, in many practical applications the mechanical properties of the

investigated structure are either unknown or rather complex, for example, in the case

of anisotropic material. This circumstance is a severe obstacle to the theoretical finding

of ’sweet spot’ or ’local peak’ frequencies. On the other hand, the experimental

determination of these frequencies can be time-consuming. Therefore, theoretical

investigations of wave patterns associated with different excitation frequencies are of

particular importance.

In the present work such theoretical investigations, validated by experimental

measurements, are performed relying on an analytically-based computer model. The

paper is aimed at comparative studying of ’sweet spot’ and ’local peak’ excitation

regimes and, indirectly, at the demonstration of capabilities of the model developed.

The paper is structured as follows. At first the experimental setup is described in
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section 2, which is continued by the mathematical model description in section 3. Then

the experimental and theoretical results are discussed in section 4, firstly with regard

to the model validation and then in view of a proper choice of excitation frequencies.

2. Experimental setup

Two aluminium plates (Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.33, density

ρ = 2700 kg/m3) are used in the experiments. The smaller one (≈ 300 × 600 × 1 mm3)

is used to investigate the propagating field excited by the piezoceramic actuator. The

bigger one (≈ 1000 × 1000 × 1 mm3) serves as a test specimen for experiments with

surface obstacles. Each plate is equipped with a single, circular, vertically polarized

piezoceramic actuator (diameter D = 16 mm, thickness b = 0.25 mm). The actuators

are adhered to the surface of the plates with superglue (Loctite 401). The plates are

placed on a ridged lightweight foam.

A two-cycle sine-windowed sine toneburst with central frequencies at 50, 100 and

170 kHz is applied to the actuators at both specimens. For this purpose a Tektronix

AFG 3022B two-channel arbitrary signal generator was used. The generated signal is

amplified (Develogic WBHV 2A600 amplifier) before it is applied to the actuator.

The velocity field of the propagating wave is captured by means of a Polytec PSV-

400 scanning laser vibrometer coupled with a Tektronix TDS 1012B two-channel digital

storage oscilloscope. The scanning head of PSV-400 system is placed 1.527m above the

plate. In order to improve the reflection of the laser beam and to minimize the signal

to noise ratio a thin reflective film is glued to the surface of the plates in the area of

observation.

Two powerful permanent magnets in the shape of thick-walled cylinders are used as

surface obstacles (inner radius a1 = 3 mm, outer radius a2 = 7.5 mm, mass m = 0.0065

kg). They are fixed (and can easily be removed) oppositely at both sides of the plate

and they can be located at an arbitrary position.

3. Mathematical model

3.1. Statement of the problem and integral representations

In order to simulate numerically the Lamb wave fields generated and measured at

the experimental setup described above, let us consider a linearly elastic isotropic

layer of thickness H, occupying in the Cartesian coordinates x = (x, y, z), with the

origin put at the center of circular piezopatch contact area Ω, a semi-infinite domain

D : {−∞ < x, y < ∞,−H ≤ z ≤ 0} (figure 1). (Thus, wave reflection from the

plate edges is not considered.) Time-dependent displacements of the layer u(x, t) are

routinely expressed via the time-harmonic oscillations (frequency spectrum) u(x, ω)e−iωt
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using the inverse Fourier transform F−1
t :

u(x, t) = F−1
t [u(x, ω)] =

1

2π

∞
∫

−∞

u(x, ω)e−iωtdω. (3.1)

Hereinafter, when not confusing, we use the same symbols for time-domain functions and

their frequency spectra, distinguishing them just by the second argument, e.g. u(x, t)

and u(x, ω); if it is clear from the context, some of arguments, as well as harmonic

factor e−iωt, may be omitted. To distinguish column vectors from rows, the former are

denoted by braces, while the latter are in parenthesis: u = {ux, uy, uz} = (ux, uy, uz)
T .
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Figure 1. Side and top view of the elastic plate with circular piezoelectric actuator,

ring-shaped obstacles and test points Ak and Bm.

The displacement complex amplitude u(x, ω) obeys the Lamé-Navier equation

(λ+ µ)∇divu + µ∆u + ρω2u = 0, x ∈ D, (3.2)

where λ, µ and ρ are Lamé elastic constants and material density, respectively. The

layer surfaces z = 0 and z = −H are stress-free, except the patch-layer contact area

Ω : 0 ≤ r ≤ a, z = 0 and the annular contact areas S+ and S− of two obstacles

(magnets) symmetrically located on the surfaces z = 0 and z = −H, respectively,

(x, y) ∈ S0: a1 ≤ rs ≤ a2; here r =
√
x2 + y2 and rs =

√

(x− xs)2 + (y − ys)2, (xs, ys)

is the center of the scattering domains S±. Since the obstacles are relatively heavy and

their vibration, as compared with the free-surface displacements, is very small, they are

assumed to be immovable.

Hence, the boundary conditions are stated in the form

τ |z=0 =















q0, (x, y) ∈ Ω

q+
s , (x, y) ∈ S+

0, elsewhere

and τ |z=−H =

{

q−
s , (x, y) ∈ S−

0, elsewhere
(3.3)

u|z=0 = 0, (x, y) ∈ S+ and u|z=−H = 0, (x, y) ∈ S−. (3.4)

Here τ = {τxz, τyz, σz} is a traction vector at a horizontal surface z= const, q0(x, y)

is an axially symmetric surface traction produced in the area Ω by the circular patch
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actuator, which is assumed to be prescribed, while q±
s (x, y) are unknown contact stresses

under the obstacles; the latter have to be obtained via the contact problem solution.

For the infinite domainD boundary conditions (3.3) – (3.4) have to be supplemented

by certain radiation conditions at infinity. If the medium possesses a small wave

attenuation ε, the condition of wave amplitude tending to zero

u → 0 as r =
√

x2 + y2 → ∞ (3.5)

completes the boundary value problem (BVP) (3.1) – (3.4). For an ideally elastic

medium it is supplemented by the principle of limiting absorption [15], which means that

the solution for an ideal medium is the limit of the unique solution of the corresponding

problem for a medium with attenuation as ε→ 0.

To derive efficient algorithms for a fast computer simulation of wave fields generated

in a laminate waveguide by a surface load q, we rely on the wave field representation

via the convolution of Green’s matrix k(x) for a layered structure considered with the

load vector q applied to a surface area S:

u(x) =
∫ ∫

S

k(x − ξ)q(ξ)dξ, (3.6)

which is a traditional start point in the context of the analytically based integral

approach developed [16].

Conventionally elastodynamic problems are brought to boundary integral equations

(BIEs) using the matrix of fundamental solutions (Green matrix) g(x) derived for an

infinite homogeneous elastic space. The discretization of such BIEs yields classical

boundary element (BE) approximations [17], which, however, are not advantageous for

thin structures, since the BEs have to be allocated along all the surfaces. The matrix

k(x) is also a matrix of fundamental solutions, but, as distinct from g(x), it is derived

for the waveguide considered accounting for boundary conditions on the plane-parallel

surfaces. Specifically, the columns kj of this matrix are the solutions uj associated with

the three point loads

τ |z=0 = ijδ(x, y), j = 1, 2, 3 (3.7)

directed along the coordinate unit vectors ij, while the rest of boundary conditions

is homogeneous. In that way, integral representations like (3.6) satisfy identically all

homogeneous boundary conditions at the plane-parallel surfaces, so that the area of

integration and further discretization S is relatively small.

Using the Fourier transform Fxy applied to the equations and boundary conditions

with respect to the horizontal coordinates x and y, the matrix k is expressed via its

Fourier symbol K:

k(x) = F−1
xy [K] ≡ 1

4π2

∫

Γ1

∫

Γ2

K(α1, α2, α, z)e
−i(α1x+α2y)dα1dα2. (3.8)

The integration paths Γ1 and Γ2 go in the complex planes α1, α2 along the real axes

Imαn = 0, n = 1, 2, deviating from them for bypassing real poles of the matrix K

elements. The direction of deviation is governed by the principle of limiting absorption.
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In the conventional notation (e.g., see [18]) the symbol K for an isotropic layered

waveguide may be written in the following form

K =













−i(α2
1M + α2

2N) −iα2
1α

2
2(M −N) −iα1P

−iα2
1α

2
2(M −N) −i(α2

1N + α2
2M) −iα2P

α1S α2S R













, (3.9)

where functions M,N,P,R, S depend only on α =
√

α2
1 + α2

2 and z. For a homogeneous

elastic layer they can be derived in an explicit analytical form (see Appendix).

Conformably with eq. (3.8), convolution (3.6) can be brought to the equivalent path

integral form

u(x) =
1

4π2

∫

Γ1

∫

Γ2

K(α1, α2, α, z)Q(α1, α2)e
−i(α1x+α2y)dα1dα2, (3.10)

where Q = Fxy[q].

Representations (3.6) and (3.10) are valid for a load q given at the upper surface

z = 0, while for loads applied to the lower surface z = −H (for q−
s in the case) similar

representation with the matrix k−(x) = F−1
xy [K−] is employed. Its elements K−

ij are

expressed through the K elements: K−
ij (z) = (−1)i+j−1Kij(−z −H), i, j = 1, 2.

Thus, the solution of BVP (3.2) – (3.5) may be written in the form

u = u0 + usc, usc = u+
sc + u−

sc

u0(x) =
∫∫

Ω
k(x− ξ, y − η, z)q0(ξ, η)dξdη

u±
sc(x) =

∫ ∫

S±

k±(x− ξ, y − η, z)q±
s (ξ, η)dξdη, (k+ ≡ k)

(3.11)

where u0 is the incident field generated by the load q0 in the infinite plate without

obstacles, while u±
sc are fields scattered by obstacles.

3.2. Incident field

Under applied voltage V e−iωt the circular piezoelectric patch expands from and contracts

to the center r = 0 in the radial directions. Therefore, with relatively thin and

flexible patches bonded to a layer, the vertical and angular components σzz and τϕz

of the generated contact stresses are negligible, so that only the radial component

τrz is worth to be taken into account. Thus, in the cylindrical coordinates (r, ϕ, z):

x = r cosϕ, y = r sinϕ, r =
√
x2 + y2, 0 ≤ ϕ ≤ 2π, the traction vector q0 = {qr, qϕ, qz}

may be taken in the form q0 = {p, 0, 0} with an independent of ϕ shape function p(r)

for the radial contact traction. In general, this function is unknown and so it has to be

obtained via solution of a patch-layer contact problem just as it was performed for strip

patch actuators [7] or using the Galerkin approach, similarly as for the scattered field

usc below.

However, at relatively low frequencies the contact stresses, exhibiting square-root

singular concentration at the border of contact area ∂Ω [19], may be well approximated

by the square-root function p(r) = p0/
√

1 − (r/a)2. Moreover, in regard to far-field



Lamb wave excitation and propagation in elastic plates 7

asymptotics of generated Lamb waves, the concentrated ring delta-like distribution of

radial tensions along the border p(r) = p0δ(r − a) may be successfully substituted for

the patch action on the surface, similar to the pin-force models for strip and rectangular

patch actuators [5, 20, 21]. Test calculations against experimental measurements carried

out in the indicated works and in the cited therein ones, as well as comparisons with the

results obtained via strict contact problem solution [7], have shown the applicability of

delta-like approximations within a considerable part of the two-mode frequency range.

It gave a ground to use such a model for the circular patch actuator employed, as well.

Its validity has been confirmed by the experimental measurements presented below (see

section 4).

With an axially symmetric load qr = p(r) the generated field u0 = {ur, uϕ, uz},
considered in cylindrical coordinates, is also axisymmetric. Actually, its components

are expressed through qr in terms of Fourier-Bessel integrals derived from eq. (3.10) via

the change of variables α1 = α cos γ, α2 = α sin γ, α =
√

α2
1 + α2

2, 0 ≤ γ ≤ 2π, and the

use of the integral representation for the Bessel functions Jn [22]

(±i)n2πJn(r) =

2π
∫

0

e±i(r cos(ϕ−γ)−nγ)dγ.

As a result,

ur(r, z) = − 1
2π

∫

Γ+

M(α, z)P (α)J1(αa)α
3dα

uϕ(r, z) = 0

uz(r, z) = 1
2π

∫

Γ+

S(α, z)P (α)J0(αa)α
2dα

(3.12)

where

P (α) = 2πi

∞
∫

0

p(r)J1(αr)rdr (3.13)

is the Fourier-Bessel transform of the radial stress component qr. In view of the ring

δ-function property

2π

∞
∫

0

f(r)δ(r − a)rdr = f(a)

eq. (3.13) is reduced to the close analytical representation P (α) = p0iJ1(αa), which is

substituted in eq. (3.12) if a ring δ-source is considered. Functions M and S in (3.12)

are those entering in the first column of matrix K (3.9); the contour Γ+ results from Γ1

and Γ2 in line with the change of variables α1 and α2, it goes in the complex plane α

along the real semi-axis Reα ≥ 0, Imα = 0 deviating from it to bypass the real positive

poles ζn of the functions M and S. The latter are roots of the characteristic equation

∆(α, ω) = 0 ⇒ α = ζn(ω), (3.14)
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where ∆ is the common denominator of these functions (see Appendix). In fact, it is

the Lamb wave dispersion equation yielding wave numbers ζn for both antisymmetric

and symmetric Lamb modes ak and sk, k = 0, 1, 2, ... [23].

Using the residual technique, integrals (3.13) are brought to the series

ur =
∞
∑

n=1
a(1)

n (z)H
(1)
1 (ζnr)

uz =
∞
∑

n=1
a(2)

n (z)H
(1)
0 (ζnr)

, r > a

an = {a(1)
n , a(1)

n } = −{iζnMn(z), Sn(z)}ζ2
nP (ζn)/2

(3.15)

where Mn = resM(α, z)|α=ζn
, Sn = resS(α, z)|α=ζn

, P (ζn) = p0iJ1(ζna), H
(1)
0 and H

(1)
1

are cylindrical Hankel functions, exhibiting the far-field asymptotic behavior [22]

H(1)
m (ζnr) =

√

2

πiζnr
(−i)meiζnr[1 +O(1/(ζnr))], |ζnr| >> 1. (3.16)

Poles ζn are supposed to be numbered in ascending order of their imaginary parts:

Im ζn+1 ≥ Im ζn, so that the totally real ones go first.

Hence, at a fixed frequency ω there are a few first terms of series (3.15) associated

with real poles that describe traveling Lamb waves propagating from the source in radial

directions with the phase and group velocities vn = ω/ζn and cg,n = dω/dζn. The vectors

an are normal mode eigenforms coinciding to constant factors with those obtained from

the BVP with homogeneous boundary conditions using the modal analysis technique. In

contrast to the latter, an are uniquely fixed and via the factors P (ζn) they account for the

information about the source; in particular, it allows one to analyze the source energy

partition among the excited modes. The complex poles ζn occurring for n ≥ Nr +1 (Nr

is a number of real poles) yield exponentially decaying normal modes with the amplitude

decreasing as e−|Im ζn|r/
√

|ζnr|, |ζnr| → ∞. Therefore, series (3.15) are fast-converging

ones, so as only one or two complex ζn are usually enough to keep their reasonably

accurate truncation for all r > r0 > a with a rather not distant threshold value r0. For

distant r (e.g., for the points used in the experimental measurements) no complex ζn
have been required to take into account at all.

The measurements have been carried out within the two-mode frequency range, in

which only fundamental modes a0 and s0 can be excited (Nr = 2). In eq. (3.15) they

are described by the terms associated with the two first poles (wave numbers) ζ1 and ζ2.

The plots of their frequency dependencies (dispersion curves), as well as plots for group

velocities are well-known, but for the clearness of further discussions they are depicted

in figure 2 once again in both dimensionless and dimensional coordinates. The vertical

dashed lines indicate the central frequencies fi (and dimensionless ωi) for which the

results of measurements and calculations are presented below. To give an idea about

the comparability of displacement components in the excited a0 and s0 modes, figure 3

displays dimensionless plots of the amplitudes of residuals Mn(0) and Sn(0), which

control eigenvectors an in eq. (3.15). Since the difference is large, the plots are given

in a logarithmic scale. One can see the overall dominance of the vertical component
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of bending mode a0 controlled by Sn (lower subplot), while the radial component of s0

mode are expectedly larger than of a0 one (upper subplot).
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Figure 2. Dispersion curves of fundamental modes: wave numbers ζn (top) and group

velocities cg,n (bottom) versus frequency.
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Figure 3. Residuals Mn(0) and Sn(0) vs. ω.

The dimensionless form are introduced by the choice of l0 = H as the unit of

length, v0 = vs as the unit of velocity and ρ0 = ρ as the unit of density. In these units

the dimensionless angular frequency ω = 2πfH/vs, where f is dimensional frequency.
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Specifically, for the plate under consideration

l0 = 1 mm = 10−3 m f0 = v0/l0 = 3.122 · 106 s−1 = 3.122 MHz

v0 = 3122 m/s t0 = 1/f0 = 0.32 · 10−6 s = 0.32µs

ρ0 = 2700 kg/m3 p0 = ρ0v
2
0l

2
0 = 2.63 · 104 N

Series representation of form (3.15) is valid for any axisymmetric shear tension

τrz = p(r). If the load q is asymmetric, the generated field u0 may be approximated by

a superposition of fields uj excited by the point-wise δ-sources

τ |z=0 = qjδ(x − xj), xj = (xj, yj, 0), j = 1, 2, ..., Nq (3.17)

distributed in the load area [18]. Obviously, these wave fields uj are expressed via the

Green matrix k(x) without any integration over the load area:

u(x) ≈
Nq
∑

j=1

uj(x), uj(x) = k(x − xj)qj. (3.18)

This sum itself may be treated as a cubature approximation for the convolution integral

(3.6).

The same way as eq. (3.15), every uj can also be represented explicitly in terms

of normal modes in the local cylindrical coordinates (rj, ϕj, z) centered at the source

points xj. For example, instead of the ring δ-source used in series representation (3.15),

the load approximation by a set of the point-wise δ-sources allocated evenly along the

border r = a has also been used for test calculations. The validity of such approximation

is illustrated by figure 4, in which the normalized vertical amplitude |uz| calculated

at the surface point x = (100, 0, 0) is plotted versus the dimensionless radius a of

the source area Ω. Solid lines are for the results obtained using eq. (3.15), while the

markers show the values obtained via approximation (3.18) with Nq = 48 point sources

(3.17) located at the points xj = a{cos θj, sin θj, 0} and producing radial shear tensions

qj = p0{cos θj, sin θj, 0}/Nq, θj = 2πj/Nq, j = 1, 2, ..., Nq; ω = 0.5.

Figure 4. Comparison of source models at ω = 0.5.

Besides the validation of expansions (3.18), this figure visually shows that with

certain patch sizes the laser-registered displacement component uz becomes very

small. Obviously, it occurs when the source factor P (ζ1), controlling the dominant

a0 amplitude, is equal to zero, i.e. when

ζ1a = jk or a/λ1 = jk/(2π), k = 1, 2, ..., (3.19)



Lamb wave excitation and propagation in elastic plates 11

where jk are the Bessel function zeros: J1(jk) = 0, λ1 = 2π/ζ1 is the wavelength of

bending mode a0. The radii ak = jk/ζ1 hitting upon conditions (3.19) are marked in

figure 4 by the dark points on the axis a. Apparently, with laser vibrometer based

measurements, one ought to avoid patch sizes and central frequencies falling into this

condition.

3.3. Scattered field

The field usc may be evaluated by the same way as u0, but only after the unknown

contact stresses q±
s have been obtained from the boundary integral equations (BIEs).

The diffraction problem is reduced to the BIEs

Kqs = f , x ∈ S± (3.20)

by the substitution of fields (3.11) into boundary conditions (3.4). Here qs = {q+
s ,q

−
s }

and f = −{u+
0 ,u

−
0 } are generalized six-component vectors of unknown contact stresses

and known incident displacements in the domains S+ and S−; K = [Kij]
2
i,j=1 is a 6 × 6

matrix integral operator formed from the 3 × 3 matrix integral operators Kij of the

right parts of u±
sc representations (3.11) with Ki1 and Ki2 expressed via k+ and k−,

respectively, at z = 0 (i = 1) and z = −H (i = 2), (x, y) ∈ S0.

Since the distribution of contact stresses induced by the incident waves u0 is non-

axially symmetric, it is convenient to use for BIE solution the expansions in terms of

δ-like axially-symmetric (radial) basis functions ψj(x, y) = ψ(x−xj

h
, y−yj

h
) centered at the

nodes (xj, yj) covering evenly the domain of integration S0 with a spacing h; ψ(x, y) =

ψ(r) is a radial shape function, its δ-like property means that ψ(x/h, y/h)/h2 → δ(x, y)

as h→ 0. The variational Galerkin scheme, i.e. the substitution of the expansion

qs ≈ qN(x, y) =
N
∑

j=1
cjψj(x, y), cj = {c+

j , c
−
j } (3.21)

into eq. (3.20) and projection of the discrepancy KqN − f onto the same basis ψi, leads

to the linear algebraic system with respect to unknown expansion coefficients cj:

N
∑

j=1
bijcj = fi, i = 1, 2, ..., N

bij = (Kψj, ψi)L2
, fi = (f , ψi)L2

.

The use of radial shape functions ψ(r) allows one to avoid numerical integration of

multifold singular integrals for obtaining the system coefficients bij and fi by bringing

them to a one-fold form similar to path integrals (3.12). They may also be represented

in terms of residuals from the poles ζn. As a result, the cost of matrix B = [bij] and

vector f = {f1, f2, ..., fN} compiling becomes less than of the system solution itself.
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In line with expansion (3.21) the diffracted field usc is approximated by the sum of

fields u±
j radiated by the locally axisymmetric sources ψjc

±
j located in the areas S±:

usc ≈
N
∑

j=1
(u+

j + u−
j ),

u±
j = h2

4π

∫

Γ
K(i∂/∂x, i∂/∂y, α, z)c±j Ψ(αh)H

(1)
0 (αrj)αdα =

= ih2

2

∞
∑

n=1
resK(i∂/∂x, i∂/∂y, α, z)|α=ζn

c±j Ψ(ζnh)H
(1)
0 (ζnrj)ζn,

(3.22)

Ψ(α) = Fxy[ψ] = 2π
1
∫

0
ψ(r)J0(αr)rdr, rj =

√

(x− xj)2 + (y − yj)2.

The derivatives i∂/∂x and i∂/∂y stand in the matrix K on the places of variables α1

and α2 in accordance with the general Fourier transform property

Fxy

[

∂p1+p2

∂xp1∂yp2
u(x, y)

]

= (−iα1)
p1(−iα2)

p2U(α1, α2).

They act on the Hankel function H
(1)
0 (ζnrj) yielding the Hankel functions again [22] so

that no any derivatives actually remain in the final representation. For example,

−iα1 → ∂
∂x
H

(1)
0 (ζnrj) = −ζn cosϕjH

(1)
1 (ζnrj)

−α2
1 → ∂2

∂x2H
(1)
0 (ζnrj) = ζ2

n cos2 ϕj H
(1)
0 (ζnrj) − ζn/rjH

(1)
1 (ζnrj)

cosϕj = (x− xj)/rj

Originally this approach has been proposed and proved its efficiency for dynamic

contact problems with arbitrarily shaped contact domains, and then it has been extended

for elastodynamic scattering problems, as well. The details of its implementation may

be found in [16, 18] and papers mentioned therein. Therefore, we stop description at

this point, just adding that for usc calculations below the bell-like shape function

ψ(r) =

{

2
π
(1 − r2), 0 ≤ r ≤ 1

0, r > 1
with Ψ(α) = 8J2(α)/α2

has been used.

4. Results and discussion

In this section we present at first the results of the theory-to-experiment comparisons

validating the computer model developed, then we discuss rules for a proper choice of

central excitation frequencies for a laser-based structural health monitoring following

from the numerical analysis performed.
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4.1. Model validation

To test the prediction ability of the mathematical model described above, there have

been performed two series of experimental measurements. In the course of the first one

the out-of-plane displacements uz(t) generated by the piezo patch source of radius a = 8

mm in the aluminium plate without obstacles were measured by the laser vibrometer

and/or calculated at the points Ak, k = 1, 2, 3, 4, lying on the same with source surface

z = 0 (figure 1). Apparently, this series dealt only with the incident field u0. In the

second series, the signals uz(t) related to the total field u = u0 +usc were calculated and

measured in the points Bm,m = 1, 2, 3, 4 lying on the lower surface z = −H (figure 1),

as well as at a number of surface points in a rectangle area 100×100 mm2 for compiling

2D scan-images illustrating Lamb wave diffraction by obstacles (e.g. figure 9 below).

The source patch has been driven by the two-cycle sine-windowed sine excitation voltage

signal

V (t) =







sin(2πfct) sin(πfct/2), 0 ≤ t ≤ 2T

0, t > 2T
(4.1)

at the central frequencies fc = fi, fi = 50, 100 and 170 kHz for i = 1, 2 and 3, respectively

(in the dimensionless form at ωc = 0.10, 0.20 and 0.34; see figure 2); T = 1/fc is the

period of sine cycle.

The results of the first series are presented in figures 5 – 7 displaying theoretical

(solid lines) and experimental (dashed lines) signal patterns uz(t) related to Lamb waves

excited with the central frequencies fi specified above and registered at the points A1 and

A2 (subplots (b) and (c), respectively). The amplitudes of the signals are normalized to

their maximal absolute values. The subplots (a) of these figures show the dimensionless

frequency spectrum amplitudes for the driving pulse (|V (ω)|, solid line), for the plate

displacement response on the δ-pulse τ |z=0 = q0 δ(t) (|uz(ω)|, point-dashed line) and

for the frequency-domain integrand as a whole (|uz(ω)V (ω)|, dashed line).

The signals uz(t) measured and computed at the points Bm in the case of the

presence of obstacles (the second series) are shown in figure 8 (fc = f2 = 100 kHz,

ω = 0.20), while figure 9 presents experimental (left) and theoretical (right) 2D snap-

shot surface scans of the vertical velocity u̇z(x, y, 0, t) at t = 0.16 µs for the same

incident field u0. At all plots of figure 8 the reflected signal is clearly visible as a small

wave packet following after the large incident wave record, though at subplot 8(c) it

is interacting with the latter. In figure 9 the reflected field usc is visible even better.

It manifests itself as concentric circle wave fronts diverging from the point of obstacle

location in the backward south-west direction, while there is also visible a shadow zone

in the transmitted field behind the obstacle, which stretches in the north-east direction.

A very good coincidence of theoretical and experimental plots and scan-images

confirms high prediction ability of the mathematical model developed. It should be

remarked that just a small, comparatively simple part of the model has been employed

for these predictions, while it could also account for patch-structure interaction and for a

higher multimode frequency range [7], as well, as for laminate isotropic [24], anisotropic
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Figure 5. Theoretical (solid lines) and experimental (dashed lines) wave patterns

for the aluminium plate excited by a circular piezoactuator at the points A1 (r = 70

mm,(b)) and A2 (r = 140 mm,(c)); subplot (a) is for frequency spectra |V (ω)| (solid

line), |uz(ω)| (point-dashed line) and |uz(ω)V (ω)| (dashed line).

[25] and functionally graded elastic properties of the substrate. The obstacles may be

not only on the surface but also hidden ones, such as arbitrarily shaped and inclined

cracks [18, 26], inclusions and cavities [24], and so far.

4.2. Proper choice of central excitation frequencies

In the Lamb wave based SHM there are two main sensing techniques: first, by piezo

patch sensors and, second, using laser vibrometers. To demonstrate their specific

features and difference in results provided by these two ways, let us consider frequency

spectra of the registered a0 (solid lines) and s0 (dashed lines) modes generated by the

same circle patch generator (a = 8 mm) as in the examples above (figure 10). The upper

subplot is for the laser-measured vertical displacement amplitude |uz(ω)| calculated in

the point A1 (r = 70 mm), while the low one depicts the response |Vc(ω)| of a piezosensor

centered at the same point A1. The voltage Vc of received signals has been computed

using the equality [27]

Vc =
Ac

Sc

∫ ∫

Ωc

(

∂ux

∂x
+
∂uy

∂y

)

dxdy,
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Figure 6. The same as in figure 5 but for fc = 100 kHz.

Figure 7. The same as in figure 5 but for fc = 170 kHz.



Lamb wave excitation and propagation in elastic plates 16

Figure 8. Theoretical (solid lines) and experimental (dashed lines) signals received

at the points Bm on the plate with obstacles (see figure 1).

Figure 9. Experimental (left) and computed (right) snap-shot scans of the vertical

velocity component uz(x, y, 0, t) for the wave field diffracted by the obstacle; fc = 100

kHz, t = 0.16 µs.
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where ux and uy are components of the generated field u0 considered in the sensor

contact area Ωc : (x− xc)
2 + (y − yc)

2 < a2, xc = 70 mm, yc = 0, a = 8 mm; Sc = πa2

is the area of Ωc and Ac, which depends on electrical and mechanical properties of the

sensor, is taken to be equal to unity.

Figure 10. Frequency spectra of the laser-sensed out-of-plane displacement |uz|
(subplot (a)) and of the piezo-sensed voltage |Vc| (subplot (b)) for a0 (solid line) and

s0 (dashed line) modes.

Predictably, first of all the laser-based sensing registers the a0 mode (figure 10(a)),

while the piezo patch sensor gives a stronger response to s0 mode than to a0 one

(figure 10(b)). Consequently, the frequencies at which |Vc| for s0 signals reaches local

maximums, (e.g., at ω3 = 0.34 or f3 = 170 kHz in the example considered) have

been named ’sweet spots’ of PZT SHM [4, 12]. They should be chosen as the central

frequencies fc for a driving voltage (4.1). Naturally, these frequencies may not be optimal

for the uz laser registration. Moreover, in the example considered ω3 = 0.34 hits upon

the minimum of a0 amplitude conditioned by eq. (3.19). It results not only in worse

conditions for laser detection, but also in essential disturbances complicating accurate

interpretation of the patch-sensed reflected signals, due to the fact that instead of one

strong maximum of the driven voltage spectrum |V (ω)| the total spectrum |V (ω)uz(ω)|
has two local maximums at ω = 0.23 and ω = 0.44 (f = 114 and f = 219 kHz)

(figure 7(a)). Therefore, the wave package becomes blurred (figures 7(b) and 7(c))

separating at longer distances into two packages (figure 11) propagating with different

group velocities cg,1 = 1881 and cg,2 = 2369 m/s (figure 2).

Local maximums of |uz(ω)| (a0 sweet spots) look more attractive for laser-based

sensing since they do not yield dispersive wave packets. For example, the wave packet

excited by the four-cycled Hann windowed sine toneburst at the central frequency
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Figure 11. The same as in figure 7 but for the points A3 and A4.

fc = f4 = 233 kHz (ω4 = 0.49) which hits upon the second local maximum of |uz|
(figure 12(a)), propagates without visible dispersion (figures 12(b) and 12(c)) that

enables high quality resolution of defects detected by the reflected field. On the contrary,

the reflected from the obstacle signals, excited with fc = 50 kHz and fc = 170 kHz (the

spectrum see in figures 5(a) and 7(a)) and calculated in the point B1 (figure 13) are

fuzzy.

Figure 12. The same as in figure 5 but for fc = 233 kHz (non-dispersive signal).
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Figure 13. Theoretical wave patterns at point B1 in the plate with obstacles; fc = 50

kHz (a) and fc = 170kHz (b) (dispersive wave packets).

5. Conclusion

The analytically-based computer model developed for the simulation of Lamb wave

excitation, propagation and diffraction in laminate structures (composite plates) with

obstacles (defects) is a convenient tool for the interpolation of measured data and for the

elaboration of smart algorithms for defect detection and characterization. In particular,

it has been demonstrated that the sweet spot central frequencies, proposed for optimal

s0 mode based SHM, may be improper for a laser-based sensing. As a proper choice

for a laser-based sensing, it is suggested to use tonebursts with central frequencies fc

providing maximal values of the structure response spectrum |uz(ω)|, i.e. those located

between the points of its local minimums conditioned by eq. (3.19) (for a circle actuator).

The response spectra for patch actuators of other shape (e.g. for rectangle ones) can be

easily obtained in the context of the model developed including with strict accounting

for patch-structure interaction via the contact problem solution. It paves the way for

making tables of optimal central frequencies for given plate samples and actuating tools.
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7. Appendix

For a stress-free elastic layer of thickness h the functions entering in matrix K (3.9)

are of form:

M(α, z) = −iσ2{α2γ2(σ1σ2 s2 + γ2 s1)−
−α2γ4 cs21 + α4σ1σ2 sc21 − α2γ2σ1σ2 cs12 + γ6 sc12}/(α2∆(α))

N(α, z) = i chσ2(z + h)/(µα2σ2 shσ2h)

P (α, z) = {−σ1σ2(γ
2α2 c1 + γ4 c2)−

−α2σ2
1σ

2
2 ss12 + σ1σ2γ

4 cc12 + α2σ1σ2γ
2 cc21 − γ6 ss21}/∆(α)

R(α, z) = σ1{−α2γ2(σ1σ2 s1 + γ2 s2)+

+α2σ1σ2γ
2 cs21 − γ6 sc21 + α2γ4 cs12 − α4σ1σ2 sc12}/∆(α)

S(α, z) = −i{σ1σ2γ
2(α2 c2 + γ2 c1)−

−σ1σ2γ
4 cc21 + α2σ2

1σ
2
2 ss21 − α2σ1σ2γ

2 cc12 + γ6 ss12}/∆(α)

where

∆(α) = 2µ[−2α2σ1σ2γ
4 − (γ8 + α4σ2

1σ
2
2) shσ1h shσ2h+ 2α2σ1σ2γ

4chσ1h chσ2h]

sn = shσnz, cn = chσnz, γ2 = α2 − 0.5κ2
2

ssmn = shσmh shσn(z + h), csmn = chσmh shσn(z + h)

scmn = shσmh chσn(z + h), ccmn = chσmh chσn(z + h)

σn =
√

α2 − κ2
n, κ2

1 = ρω2/(λ+ 2µ), κ2
2 = ρω2/µ, m, n = 1, 2


