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Wave excitation, propagation and diffraction phenomena as well as related resonance trap-mode, gap-band and pass-band
effects occurring in one-dimensional waveguides with obstacles are considered. The waveguide is a spring-supported
string with pointwise changed cross-section and/or spring force. The analysis is based on semi-analytical solution in terms
of the waveguide’s Green functions with unknown coefficients. The latter are obtained from a linear algebraic system
whose eigenvalues are spectral points of the problem considered. One of the purposes is to examine the relation between
the spectral point allocation in the complex frequency plane and the resonance wave phenomena observed. It is shown that
pass-band phenomena are controlled by natural frequencies approaching to the real axis.
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1 Introduction

Diffraction of traveling waves in linear waveguides by obstacles leads sometimes to a sharp capture of wave energy which
is localized in the form of energy vortices and manifests itself through increased vibration amplitude near the obstacles.
This phenomenon is known with different names such as trapped modes in fluid [1, 2], elastic [3] or electromagnetic [4]
waveguides, eigenmodes associated with discrete real spectral points of an inhomogeneous elastic strip [5], resonance of
inhomogeneous waves in lengthy elastic structures [6], vibration-strength viruses [7], resonant energy vortices [8, 9], and
others. Mathematically those effects are connected with the distribution of natural frequencies (resonance poles) ωn in the
complex frequency plane ω: the closer ωn locates to the real axis, the sounder the resonance effect is.

Those resonance effects are of interest for the development of wave methods for defects location and identification
(non-destructive evaluation and structural health monitoring [10,11]) as well as for the assessment of dynamic strength and
failure properties of new laminate composite materials with micro and macro defects. Quite often the resonance diffraction
is accompanied by an abrupt screening of incident waves. A sound appearance of the screening effects takes place, in
particular, with periodical obstacles, such as systems of interdigital contacts or grooves used in acoustoelectronic frequency
filters based on surface acoustic waves [12], or dielectric periodic structures (photonic crystals) with gap bands [13, 14].
Similar band gaps are typical for acoustic wave propagation in periodic composites and crystal structures (atomic phonon
lattices) [15–19].

In previous works [8, 9, 20–23] we also considered the trapped-mode, energy localization, pass-band and stop-band ef-
fects inherent to elastic layered waveguides with single and multiple obstacles of different kinds (surface slabs, cracks, rigid
inclusions, and cavities). The mathematical models used in these investigations have been based on semi-analytical integral
representations in terms of Green’s matrices of the structures considered. The forms of wave localization are governed here
by the eigensolutions un associated with the resonance poles ωn which are actually the spectral points of integral operators
of the related elastodynamic boundary value problems in the frequency domain. In ideally elastic structures certain combi-
nations of obstacles may result in totally real poles ωn, yielding theoretically interminable undamped oscillation localized
near the obstacles. Some examples of eigenforms depicting wave energy localization around one and two cracks in an
elastic layer are presented in [9, 22].

It was also found [21] that although the set of resonance poles ωn for a group of obstacles cannot be obtained as a
simple combination of poles corresponding to the individual obstacles taken alone (due to their mutual wave interaction),
the blocking properties of the group as a whole is determined in the main by the stop-bands of its individual members.

∗ Corresponding author E-mail: evg@math.kubsu.ru
∗∗ E-mail: wauer@itm.uni-karlsruhe.de

Copyright line will be provided by the publisher



2 E. Glushkov, N. Glushkova, and J. Wauer: String with point-wise defects

Therefore, it turned out to be possible to extend a frequency stop range (gap band) by the use of an aperiodic system of a
few obstacles (cracks) with individual spectral points lying close to each other and to the real axis instead of the use of large
periodic systems. Further studies of elastic waveguides with multiple defects have shown that inside gap bands there might
exist pass frequencies [22, 23]. In the transmission coefficient plots such pass modes appear as narrow peaks centered at
frequencies ωp located closely to the resonance poles ωn : ωp ≈ Reωn. The number of such pass frequencies ωp (and
correspondingly of the transmission peaks) is proportional to the number of obstacles N but they all are located in a limited
frequency range; therefore, as N increases the peaks fill in tightly this range forming a pass band inside a wider gap band.

The main idea of the present study is to get an insight into the mechanism of similar effects in the context of a simpler
waveguide model providing a possibility to operate with close analytical representations. Therefore, a spring-supported
string with point-wise defects has been chosen as a waveguide. On the one hand, such a structure permits of the trapped
mode and wave localization effects [3], on the other hand, its frequency-domain Green function has a simple analytical
representation facilitating detailed investigation.

It should be noted that one-dimensional models like strings, rods and beams has also an independent meaning for
different engineering applications, e.g. for railway track dynamics simulation [24].

2 Mathematical framework

Let us consider a straight infinite string −∞ < x < ∞ lying on a spring foundation (Fig. 1). The dynamic processes in
the string are caused by a given incident force p(x, t). The load gives rise to the transverse string displacement w(x, t) that
obeys the governing partial differential equation [25]

ρAw,tt + cw − Sw,xx = p(x, t) (1)

with the homogeneous initial conditions w(x, 0) = w,t(x, 0) = 0. Here ρ is string density, A is its cross-section area, c is
spring rate of the foundation, and S is axial pre-stress of the string.

Fig. 1 Springily supported string with defects at points xj .

It is assumed that this waveguide structure may have a set of defects modeled by the point-wise variation of the spring
force c and/or the cross-section mass ρA:

c(x) = c0[1 +
N∑
j=1

εjδ(x− xj)], ρA(x) = ρ0A0[1 +
N∑
j=1

αjδ(x− xj)]. (2)

Here δ(x) is Dirac’s delta-function, ρ0, A0 and c0 are constant parameters of the homogeneous (free of defects) string, N
is a number of defects, xj are points of defects’ location, εj and αj are dimensionless defects’ characteristics. Since the
constants εj control the spring response of the foundation, they specify foundation defects, while αj determine the point
inhomogeneities (defects) of the string itself. With αj > 0 the latter are additional point masses, while negative αj indicate
notch-like or crack defects of the string. With αj = −1 the string cross-section is equal to zero, hence, the lesser values
αj < −1 have no physical meaning. Similarly, εj > 0 and εj < 0 assign respectively greater and lesser spring force than
in the homogeneous defect-free base with no any spring response at x = xj if εj = −1. On the whole, the defect constants
vary in the limits

−1 < εj , αj <∞;

if εj = 0 or αj = 0, there is no any foundation or cross-section defect at the point xj .
For simplicity, it is assumed that the incident force is a point load applied at the origin:

p(x, t) = p0δ(x)f(t) (3)

(f(t) is a time-shape function of the load), and all of the defects lie on the right of the source: xj > 0.
Copyright line will be provided by the publisher
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The transient (time-domain) solution w(x, t) of eq. (1) can be routinely expressed through its frequency spectrum
w(x, ω) using the inverse Fourier transform integral operator F−1

t :

w(x, t) = F−1
t [w(x, ω)] ≡ 1

2π

∞∫
−∞

w(x, ω)e−iωtdω ≡ 1
π

Re

∞∫
0

w(x, ω)e−iωtdω. (4)

(Hereinafter, when not confusing, we use the same symbols for time-domain functions and their frequency spectra, distin-
guishing them just by the second argument, e.g. w(x, t) andw(x, ω).) The spectrumw(x, ω) obeys the ordinary differential
equation

Sw,xx + (ω2ρA− c)w = −p0F (ω)δ(x) (5)

which follows from eq. (1) after the application of the forward time-domain Fourier transform

Ft[w(x, t)] ≡
∞∫
−∞

w(x, t)eiωtdt = w(x, ω), (6)

assuming that w(x, t) = w(x, t),t = 0 for t ≤ 0.
In view of the general δ-function property

w(x)δ(x− xj) = w(xj)δ(x− xj),

the δ-constituents in the coefficients of eq. (5) induced by the defects (see eq. (2)) may be replaced by the terms wj(ω2ρ0A0

αj − c0εj)δ(x−xj) with unknown constant factors wj = w(xj , ω). After transferring those terms into the right-hand side
we arrive at the equation

Sw,xx + (ω2ρ0A0 − c0)w = −p0F (ω)δ(x) +
N∑
j=1

wj(c0εj − ω2ρ0A0αj)δ(x− xj). (7)

To reduce the number of input parameters it is worthy to carry out further calculations in a dimensionless form. The
dimensions of constants and variables appearing in eqs. (1) and (7) (in SI units) are

[S]=N=kg·m/s2, [c0]=N/m2= kg
m s2 , [t]=s,

[ρ0]=kg/m3, [p]=N/m, [x] = [xj ]=m,

[A0]=m2, [ω]=radian/s=rad·Hz, [w(x, t)]=m.

We should also take into account that the differentiation and integration change the dimensions: [w,xx] = [w]/m2=1/m,
[w,tt] = [w]/s2=m/s2, [w(x, ω)] = [Ft w]=m·s.

The dimensionless values (indicated by overlines) are introduced as follows

x̄ = x/h, x̄j = xj/h, w̄(x̄, ω̄) = w/(ht0),

ω̄ = ω/f0 = h
√
ρ0A0/S ω, c̄

2 = h2c0/S (c̄ is squared for convenience in further calculations).

Here h is a reference length, while t0 = h
√
ρ0A0/S and f0 = 1/t0 are the units of time and frequency. The parameters

ω̄ and c̄2 may be referred to as dimensionless angular frequency and relative (to the string pre-stress S) base stiffness,
respectively.

Taking into account that

S
d2w

dx2
=
St0
h

d2w̄

dx̄2
=
St0
h
w̄

′′

and dividing all the terms of eq. (7) by St0/h, we arrive at the dimensionless equation

w̄′′ + k2
0w̄ = −p̄δ(x̄) +

N∑
j=1

w̄j(c̄2εj − ω̄2αj)δ(x̄− x̄j) (8)
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with

k2
0 = ω̄2 − c̄2 =

h2ρ0A0

S
ω2 − h2

S
c0, p̄ =

p0F (ω)h
St0

, x̄ =
x

h
, w̄ =

w

ht0
.

In fact, w̄(x̄, ω̄) is proportional to p̄, which enters into the right-hand side of the initial equation as a constant factor.
Thus, the independent of load dynamic response of a string with defects (frequency-response characteristic) is introduced
as a solution to the equation

w̄′′ + k2
0w̄ = δ(x̄) +

N∑
j=1

w̄j(c̄2εj − ω̄2αj)δ(x̄− x̄j) (9)

which is a special case of eq. (8) with p̄ = −1. Correspondingly, the dimensional solution (integrand in (4)) is expressed
via the dimensionless solution w̄(x̄, ω̄) of eq. (9) in the following way

w(x, ω) = −p̄ht0w̄(x̄, ω̄) = −h
2

S
p0F (ω)w̄(x/h, ω/f0). (10)

Below, the overline above the dimensionless quantities is omitted.

3 Frequency response of defected spring

Just as the diffracted fields excited in 2D and 3D damaged elastic waveguides are favorably to represent in terms of boundary
integrals of Green matrix of the defectless structure, it is convenient to express the string frequency response function
w(x, ω) in terms of the Green function g(x, ω) obeying the equation

g
′′

+ k2
0g = δ(x), −∞ < x <∞. (11)

As soon as g(x) is derived, one can write a general solution to eq. (9) in the form

w(x, ω) = g(x, ω) +
N∑
j=1

fj(ω)g(x− xj , ω), fj = wj(c2εj − ω2αj), (12)

where the only unknowns are the coefficients wj describing string oscillation at the defected points xj .
To select the unique fundamental solution, possessing physical meaning from the variety of partial solutions to eq. (11),

one has to impose additional constraints on g(x). Conventionally, they are formulated as Sommerfeld radiation conditions
and the requirement to be limited at infinity. In that case the fundamental solution, describing harmonic waves excited by
the pin-force source applied at the origin x = 0, has the form

g(x) =
eik0|x|

2ik0
(13)

where with real ω

k0 =


√
ω2 − c2, ω > c

i
√
c2 − ω2, |ω| ≤ c

−
√
ω2 − c2, ω < −c

. (14)

The first and third of these inequalities provides propagation of undamped harmonic waves ei(k0|x|−ωt) from the source
to infinity (Sommerfeld radiation condition), while the second one implies zero behavior at infinity (g → 0 as |x| → ∞,
|ω| < c). The third condition for ω < −c is in agreement with the general property of a frequency spectrum

g(ω̃) = g∗(ω), ω̃ = −ω∗. (15)

(Here the asterisk denotes complex conjugation while the tilde marks points which are symmetric in the complex plane
with respect to the imaginary axis, e.g. ω̃ = −ω(1) + iω(2) for ω = ω(1) + iω(2).) Any harmonic solution (frequency
spectrum) w(ω)e−iωt must obey this property to assure the corresponding transient solution w(t) expressed in terms of the
inverse Fourier transform (4) to be a real function. Specifically, it assures the identity between the integrals in eq. (4).

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 5

Fig. 2 Integration contour Lω and vertical cuts in the ω-plane (left); horizontal cuts and downward contour closing (right)).

To meet condition (14), it is enough to fix the square-root branches in k0 =
√
ω − c

√
ω + c so that

√
1 = 1 and the cuts

are drawn in the complex ω-plane from the branch points ±c to infinity beneath the integration contour Lω of the inverse
Fourier transform F−1

t (Fig. 2, left).
The unknown coefficients wj collected in the vector w = [w1, w2, ..., wN ]T are obtained then from the linear algebraic

system

Aw = g (16)

which results from the substitution w of form (12) into the N conditions w(xj) = wj , j = 1, 2, ..., N . The matrix and the
right-hand side of this system are

A = 2ik0I −B, I is unitary matrix, B = [bij ]Ni,j=1, bij = djeij ,

dj = c2εj − ω2αj , eij = eik0|xi−xj |, g = [e1, e2, ..., eN ]T , ei = eik0|xi|.

Natural frequencies ωn of the defected string coincide with the roots of the characteristic equation

∆(ω) ≡ detA(ω) = 0, (17)

where A is the matrix of system (16). The eigensolutions wn(x) associated with the eigenfrequencies ωn are of form (12)
with wj to be the elements of eigenvectors wn : A(ωn)wn = 0.

Remark 1 The technique above based on expansion in terms of fundamental solution g(x) derived for an infinite string
is quite applicable in the case of a finite string as well. For example, if a finite string −a ≤ x ≤ a is fixed at the ends:
w(±a) = 0, then it is enough to introduce two extra terms s−g(x + a) and s+g(x − a) into expression (12), substituting
it into the N + 2 conditions at the points xj and ±a, to reduce the problem to a linear algebraic system with respect to the
vector w = [s−, w1, w2, ..., wN , s

+]T .

4 Time-domain analysis

4.1 Free of defects string

Transient propagation of a pulse w(x, t) excited in a defectless string by a given load (3) is described by integrals (4) with
w(x, ω) = g(x, ω)F (ω) taken over a contour Lω , which deviates upward from the real axis going around the integrand’s
singular points. If f(t) = δ(t), the pulse spectrum F (ω) = 1 and the solution

w(x, t) = F−1
t [g(x, ω)] = g(x, t)
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is nothing but the transient Green function of the homogeneous waveguide. With an arbitrary f(t) the time-domain solution
may be written as the convolution of g with f :

w(x, t) = g ∗ f =

∞∫
0

g(x, t− τ)f(τ)dτ.

Thus the waveguide properties are specified by g(x, t) and its frequency spectrum g(x, ω) of form (13). In the range c <
ω <∞ the wave number k0 is real and the function g(x, ω) represents undamped harmonic traveling waves propagating to
infinity with phase velocity vp = ω/k0 and group velocity vg = dω/dk0 = k0/ω = 1/vp. Since they depend on frequency,
the propagation is dispersive with the dimensionless vp descending from infinity to unity and vg increasing from zero to
unity as ω varies from the cut-off frequency ω = c to infinity (Fig. 3). In the range 0 ≤ ω < c the wave number k0 is
complex and the related oscillations are exponentially decaying as |x| → ∞, i.e. the waveguide is locked.

The frequency spectrum w = g(x, ω) exhibits sharp infinite growth at ω = c (Fig. 4), however, this point is not a
pole, but a weak (square-root) singularity and a branch point of the solution. Consequently, the continuous spectrum of
the defectless problem, yielding traveling waves, coincides with the semi-infinite real-axis segments c ≤ |Reω| < ∞,
Imω = 0 with no discrete spectral points in the ω-plane.

Fig. 3 Phase and group velocities for a defect-free string. Fig. 4 Frequency spectrum w = g(x, ω) of a defectless string;
c = 2, x = 2.

The transient Green function g(x, t) may be expressed as an integral superposition of propagating waves over the con-
tinuous spectrum. For that it is enough to draw the cuts starting from the branch points ±c along the real axis but beneath
the integration contour Lω (Fig. 2, right) and to close it basing on the Jordan lemma.

By the analysis of radicals (14) extended analytically into the upper half-plane Imω > 0 it can be shown that

k0(ω) ∼ ω, and eik0|x|e−iωt ∼ eiω(|x|−t), as |ω| → ∞, Imω > 0.

Hence, with any |x| − t > 0

g(x, ω)e−iωt → 0, as |ω| → ∞, Imω > 0,

and the integration contour Lω can be closed into the upper half-plane Imω > 0 without any poles inside. In accordance
with the Cauchy theorem it implies the quiescent state

g(x, t) ≡ 0 for 0 ≤ t < |x|. (18)

That is, in spite of the fact that for all ω the phase velocities of harmonic constituents vp > 1, the leading edge of the Green
function pulse comes to an observation point with the limiting group velocity sup vg = 1.

As t > |x|, the contour can be closed downward, rounding the cuts along their sides (Fig. 2, right). Since there are no
any other singularities (poles) in the complex plane ω in this case, the path integral (4) is equal to the minus integrals along
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the cut sides [±c,±∞] or, finally, it may be reduced to the form

w(x, t) =
1

2π

∫
Lω

g(x, ω)e−iωtdω =
2
π

∞∫
c

Im g(x, ω) sinωtdω =

= − 1
π

∞∫
c

cos k0|x|
k0

sinωtdω, t > |x|

(19)

where k0 =
√
ω2 − c2 > 0 is the value of k0 at the upper bank of the cut c < ω <∞.

Remark 2 Whereas eq. (19) demonstrates how the continuous spectrum contributes into the wave structure, the vertical
cuts (Fig. 2, left) are more preferable for numerical integration because the integrands decrease exponentially as Imω →
−∞ along such cuts. Henceforth, we fix such cuts for the numerical examples below.

4.2 Defected string

Expansion (12) can be interpreted as a superposition of complex amplitudes of time-harmonic waves excited by the original
point source p = δ(x)δ(t) (the first term g) and diffracted by the defects (all other terms fjg(x − xj)). The defects act
here as the point sources p = δ(x − xj)fj(t) with the frequency spectra fj(ω) of their time-shape functions given by
the expansion coefficients (12). The latter are proportional to the defect vibration amplitudes wj(ω) and are controlled in
addition by the defect parameters εj and αj via the factors dj = c2εj − ω2αj .

The transform F−1
t converts eq. (12) into the time-domain, yielding the transient string response in terms of the incident

pulse g(x, t) and re-excited by defects pulses uj(x, t):

w(x, t) = g(x, t) +
N∑
j=1

uj(x, t),

uj(x, t) = fj ∗ gj ≡
t−xj∫
|x−xj |

fj(t− τ)g(x− xj , τ)dτ.

(20)

Obviously,

uj(x, t) ≡ 0 if t < xj + |x− xj |, (21)

i.e., if the upper limit of integration is less than the lower one.
The bottom limit of the convolution integral follows from the fact that g(x− xj , τ) ≡ 0 for τ < |x− xj | (see eq. (18)).

It means, no signals come to the observation point x from the defect point xj earlier than the rise-up portion going with the
unit velocity.

The upper limit is also determined by a quiescent period but, for this once, of the pulse-shape function: fj(t) ≡ 0 for
t < xj , entailing fj(t− τ) ≡ 0 if τ > t− xj . This is in agreement with the physical consideration showing that the defect
must be in rest up to the time t = xj when the wavefront coming from the origin turns it on. Mathematically the rest period
t < xj follows from the main exponential behavior

fj(ω) ∼ O(eiωxj ), Imω →∞ (22)

of its frequency spectrum in the upper half-plane of the complex ω-plane, which is conditioned by the elements ej = eik0|xj |

of the right-hand side g of system (16). Such behavior allows one to close the integration contour Lω in the representation

fj(t) = F−1
t [fj(ω)] ≡ 1

2π

∫
Lω

fj(ω)e−iωtdω (23)

upward for xj − t > 0, getting fj(t) ≡ 0 due to the absence of singularities in the upper half-plane.
The diffracted pulses uj may also be expressed via their frequency spectra

uj(x, t) =
1

2π

∫
Lω

fj(ω)g(x− xj , ω)e−iωtdω. (24)
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As above, Lω can be closed upward for t < xj + |x − xj | resulting in the quiescent property (21). The limiting time
t = xj + |x − xj | is required for coming with the unit velocity from the origin to the defect (t = xj) and then from the
turned-on defect source fj(t)δ(x− xj) to a point of observation x (t = |x− xj |).

The downward closing with t > xj + |x− xj | leads, the same way as in eq. (19), to the integration along the cuts plus
the contribution of residuals from the resonance poles ωn. In other words, this yields a sum of the continuous and discrete
spectrum contributions into the total wave field. General property (15) implies that every complex pole ωn: Reωn > 0,
must have its symmetric counterpart ω̃n. Therefore, from now on only the right poles (Reωn > 0) are denoted as ωn,
while the left ones are ω̃n or −ωn for real poles. The residuals from such pole pairs of a frequency spectrum function u(ω)
extended analytically into the lower complex half-plane are also symmetric with respect to the imaginary axis:

rn = resu(ω)|ω=ωn
⇒ resu(ω)|ω=ω̃n

= r̃n.

Consequently, the pair of residuals from ωn and ω̃n yields a real transient signal

un(x, t) = −2πi
2π

(rne−iωnt + r̃ne
−iω̃nt) = 2Im [rn(x)e−iωnt]. (25)

As is well-known, if ωn is a real pole, un(x, t) describes undamped harmonic oscillation at every fixed point x, while a
complex pole lying in the lower half-plane (Imωn < 0) results in an exponentially decaying harmonics with the logarithmic
decrement δn = |Imωn|: un(t) ∼ O(e−δnt) as t → ∞. The trapped mode effect takes place with real and nearly real
spectral points ωn.

If ωn lies in the stop range 0 < ω < c, the undamped oscillation un(x, t) is spatially localized near defects. Indeed,
the wave number k0(ωn) = i

√
c2 − ω2

n is purely imaginary at this point, and the residuals from the main exponential
parts (22) of the coefficients of sum (12) contribute in the amplitude rn(x) as

∑
j

rjn, where |rjn| = aje
−|k0|(xj+|x−xj |),

aj = const. Hence the amplitude of those terms are maximal at the points of defect location xj , decreasing exponentially
as O(e−|k0||x−xj |)) with the increasing distance from the defect |x − xj |. The factors e−|k0|xj show that due to non-
propagating character of vibration at ω = ωn < c the maximum of the localized oscillation also decreases exponentially
with the defect’s distance xj from the source located at x = 0. Thus, although the real spectral points ωn < c result in
interminable oscillation, its amplitude decays exponentially with the distance from both the source and the defects.

With ωn > c the wave number k0(ωn) =
√
ω2
n − c2 is real and the residuals would give undamped propagating waves.

However, in the problem considered no real poles ωn have been found in this range ω > c. Their absence with any defect
parameters αj and εj can be easily proved for the cases of one and two defects, while for N ≥ 3 it can be strictly checked
for any fixed αj and εj by analyzing the root location of the characteristic equation (17). Nevertheless, with certain defect
parameters nearly real poles ωn: Reωn > c, Imωn < 0, |Imωn|/Reωn << 1 occur in the lower half-plane. In more
detail the pole location is analyzed in the next section.

5 Spectral analysis

5.1 One defect

With N = 1 system (16) is a scalar equation which yields

w1 =
g1

2ik0 − b11
=
eik0x1

∆(ω)
, ∆(ω) = 2ik0 − c2ε+ ω2α (ε = ε1, α = α1). (26)

On the whole (see eq. (12))

w(x, ω) =
1

2ik0

[
eik0|x| +

c2ε− ω2α

∆(ω)
eik0(x1+|x−x1|)

]
. (27)

It is easily seen that the expression in brackets tends to zero as k0 → 0 (if ε 6= α). It means, the weak singularity ω = c is
eliminable and other singularities can only be induced by the roots of the characteristic equation ∆(ω) = 0. With ε = α
the square-root singularity is non-eliminable.

The characteristic equation cannot have any real root if k0 is real, i.e. in the range ω2 > c2. It follows from the fact that
with real k0 the first term 2ik0 is pure imaginary, while the rest part is real. On the contrary, ∆(ω) is totally real in the band
ω2 < c2, so it may have real roots there.

For α > 0 the only real pole

ω1 =
√
αεc2 − 2 + 2

√
1 + αc2(α− ε)/α.
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exists if the input parameters meet the limitation max [−2/c;−1] < ε < α <∞.
With α = 0 (no mass defect),

ω1 = c
√

1− ε2c2/4, |ε|c < 2.

With α < 0 no real roots are possible if ε > α (as above), while with ε < α < 0 two real poles

ω1,2 =
√
αεc2 − 2± 2

√
1 + αc2(α− ε)/α

occur if both radicands are positive: |α|c2 < 1/(|ε|− |α|), α, ε < 0, |ε| > |α| and (αεc2−2)2 > 4(1 +αc2(α− ε)) ⇒
|ε|c > 2.

Examples of real-pole curves ωn(ε) with fixed α are given in Fig. 5 for the spring force c = 2 (left) and c = 4 (right).
The two-pole situation takes place, for example, with c = 4, α = −0.5, ε < α = −2/c. Examples of frequency spectra in
the one-pole and two-pole cases are depicted in Fig. 6. Thus, the real positive pole ω1 < c almost always exists if ε < α. If
ε becomes greater than α it leaves the real axis passing the point ω = c as ε = α. At this point the pole is eliminable, but
the weak singularity (ω2 − c2)−1/2 becomes apparent instead. Obviously, no other poles ωn may exist in the one-defect
case.

Fig. 5 Real poles in the one-defect case.

Fig. 6 Harmonic spectrum w(x, ω) at the point of defect location x = x1 = 2; one real pole (left) and two real poles (right).
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10 E. Glushkov, N. Glushkova, and J. Wauer: String with point-wise defects

5.2 Two and more defects

With N = 2 the matrix of system (16) takes the form

A =
(

2ik0 − d1 −d2e
−d1e 2ik0 − d2

)
, dj = c2εj − ω2αj , e = eik0a, a = |x2 − x1|.

Hence, the determinant ∆ = detA can also be written in a closed form:

∆ = (2ik0 − d1)(2ik0 − d2)− d1d2e
2 = 0.

With ω < c this function ∆(ω) is pure real and may have real roots. Examples of root plots for two equal defects
(α1 = α2 = α, ε1 = ε2 = ε) with the spacing a = 1, 0.5, 0.2 and 0.1 are given in Fig. 7. One can see that two obstacles

Fig. 7 Real poles ωn for strings with two equal defects spaced the distance a = 1, 0.5, 0.2 and 0.1 apart.

result in two bush-form families of polar curves branching off from the two exit points ε = ε∗1 and ε = ε∗2 at the left and
at the right of the point ε∗ = −2/c = −0.5 (ε∗1 < ε∗ < ε∗2). The latter is the exit point of the only bush family inherent
to the one-defect case shown in Fig. 5. The number of such polar curves increases in parallel with the number of obstacles
(Fig. 8). With a large a (e.g. a = 1 in the first subplot of Fig. 7), those exit points ε∗1 and ε∗2 are very close to each other and
to ε∗, so that with any fixed α two emanating polar curves go almost together following the one-defect trajectory. It reflects
the fact that the mutual wave interaction of distant defects become weak and they oscillate as independent obstacles with
practically the same resonance properties as with the one-defect string.

As the distance a shrinks, the exit points and the polar curves move apart, the right bush is more conservative remaining
not far from the one-defect polar curves, while the left polar bush accelerates as a→ 0, leaving completely the admissible
range ε > −1 with a < 0.02.
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Fig. 8 Real poles ωn for five-defect strings, even spacing a = 0.5.

On the continuous spectrum ω > c the characteristic equation ∆(ω) is complex and its real and imaginary parts must be
equated to zero simultaneously:{

cos 2k0a = 1− 4k2
0/(d1d2)

sin 2k0a = −2k0(d1 + d2)/(d1d2). (28)

The squaring of both lines of this system and their subsequent adding leads to the equation

d2
1 + d2

2 + 4k2
0 = 0

which, obviously, cannot have real roots to be a sum of positive terms (squares). Hence, no real resonance frequencies are
possible in the traveling wave range ω > c, similarly to the single-defect case above.

5.3 Nearly real poles

The presence of the exponential factors eij = eik0|xi−xj | in the matrix of system (16), which are infinitely periodic
functions (ei(z+2πn) = eiz), hints at the infinite number of roots ωn as N ≥ 2. These roots should be allocated more or
less periodically in the complex ω-plane. Indeed, the search for nearly real complex ωn has revealed such groups of poles
adjacent to the real axis from below (Imωn < 0) and located quasi-periodically along the axis (Fig. 9 - 10).

These figures give examples of ωn location in the case of N evenly spaced defects (a = 1) with parameters α = 0.5,
ε = 0.5 (Fig. 9) and α = 0, ε = 1 (Fig. 10). The parameters are chosen to illustrate two quantitatively different patterns
of pole locations as N increases: shrinking into small groups (Fig. 9) or spreading along the real axis (Fig. 10) as ω →∞.
The latter occurs only with α = 0, i.e. when the string itself is defectless and the obstacles can only be in the spring base
(ε 6= 0). In such a case the transmission coefficient tends to unit as ω → ∞, i.e. the base inhomogeneities cease to shield
the wave propagation at high frequencies if the string itself is intact (e.g. see the dashed lines for N = 1 in Fig. 16 below).
On the contrary, with any string defects, both with additional masses (α > 0) and notch-like cracks (α < 0), the wave
propagation at high frequencies becomes fully blocked (e.g. Figs. 11 – 13).

The circle markers in Figs. 9 – 10 point out the location of complex natural frequencies of two-defected strings. It is seen
that in both cases they go along the real axis with the period Reωn+1−Reωn ≈ π, rising up to the axis as Reωn increases
in the first case (Fig. 9) and, contrariwise, going down in the second example (Fig. 10). The groups of N − 1 poles appear
above these marked by circles places as N becomes greater than two, moving up closely to the real axis as N → ∞ in
both cases. The right subplots of both figures are enlarged fragments demonstrating the patterns of pole groups with large
N . In both cases they are arranged along arched-down curves that are pulled up to the axis as N → ∞. In the first case
(Fig. 9, left) the frequency bands (segments of the real axis) to which the pole groups approach are separated by increasing
intervals so that these bands shrink in points as ω →∞. Quite the contrary, such bands increase and the intervals between
them shrink as ω → ∞ in the second case (Fig. 10, left). These rules of the nearly real complex pole distribution play the
key role in the resonance gap-band and pass-band occurrences considered in the next section.
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12 E. Glushkov, N. Glushkova, and J. Wauer: String with point-wise defects

Fig. 9 Nearly real pole allocation in the complex ω-plane for N evenly spaced defects (α = ε = 0.5, a = 1).

Fig. 10 The same as in Fig. 9 but for spring defects (α = 0, ε = 1, a = 1).

6 Wave transmission through the defected zone

Let us introduce the wave-transmission coefficient κ+ as the ratio

κ+ = |w(x+, ω)|2/|g(x+, ω)|2, ω > c (29)

where x+ > xN is any point on the right of defects. This ratio shows how much the squared amplitude of string oscillation
behind the defects becomes less than the oscillation of the defect-free string. Since the factor eik0x can be brought out and
canceled, κ+ is independent of a specific location of the receiving point x+. Normally κ+ varies in the range 0 ≤ κ+ ≤ 1;
κ+ = 0 indicates the full stopping of wave propagation by the defects, while κ+ = 1 means that the defects are quasi-
transparent not telling on the wave transmission (full-passing mode).

6.1 Transmission by single defects

For a single defect κ+ = 4k2
0/|2ik0 − c2ε + ω2α|2. Figs. 11 – 13 depicting κ+ versus ω give an idea of single-defect

screening properties. solitary obstacles. The left subplot of Fig. 11 is for strings with a damaged cross-section (α1 = α 6=
0) and an intact spring foundation (ε1 = ε = 0, c = 2; this value c is kept on default in all numerical examples of this
section). One can see that the defect’s shielding ability increases as |α| grows up; it is the same for negative and positive α
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Fig. 11 Screening properties of a single string defect (ε = 0, α 6= 0, left) and base defect (ε 6= 0, α = 0, right).

Fig. 12 The same as in Fig. 11 for a single combined obstacle with the fixed base damage ε = 1 and different string inhomogeneities
α < 0 (left) and α > 0 (right).

Fig. 13 Shielding property of a single defect with ε ≤ α.
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14 E. Glushkov, N. Glushkova, and J. Wauer: String with point-wise defects

of equal absolute value. The right subplot of Fig. 11 illustrates the one-defect screening in the case of intact string (α = 0)
and defected foundation (ε 6= 0). It also depends only on the absolute value |ε|.

On the contrary, a combined obstacle does not possesses such a symmetry (e.g., Fig. 12 for ε = 1). With α > 0 (right
subplot) every curve κ+(ω) reaches the maximal value κ+ = 1 at an isolated specific frequency ω = ωp, which is the lower
the larger α is. At this frequency ωp the defect becomes invisible for an incident harmonic wave. Such pass frequencies
take place if ε ≥ α > 0. With ε < α maxκ+(ω) < 1 decreasing monotonously as ε goes down and α is fixed (Fig. 13).

6.2 Resonance passing and blocking with multiple periodic defects

The character of wave transmission through a zone with several equal defects is essentially different to that in the one-
defect case. The κ+(ω) plots are featured by periodic peaks reaching κ+ = 1 and alternating with deep depressions (gap
bands). The peak spacing for a two-defect string depends merely on the distance between the obstacles a = |x2−x1|, to be
inversely proportional to this value a (see Fig. 14 for two notch-like defects and intact base: α = −0.5, ε = 0; hereinafter
the dashed line is κ+(ω) for the corresponding one-defect string).

The period of alternation of peak zones (pass bands) keeps to be the same with any number of equal defects spaced
the same distance |xj+1 − xj | = a, j = 1, 2, ..., N − 1 apart (Fig. 15 for N defects α = ε = 0.5, a = 1; the same
as in the complex poles examples given in Fig. 9). Each of the peaks is composed of N − 1 narrow sub-peaks located
in the frequency ranges of the approximately same band widths regardless of the number of defects N . Needless to say
that the peaks are centered above the complex poles ωn shown in Fig. 9. With increasing N those sub-peaks flood in the
pass bands completely. Since all of them reach the highest level κ+ = 1, the plots above the pass bands look like tops of
painted rectangles limited from below by white arches. The arches’ tops touch the dashed line for the one-defect κ+(ω). In
accordance with the pole behavior the width of pass bands decreases with increasing frequency ω down to the degeneration
into discrete pass-frequencies at infinity.

Multiple periodic defects in the elastic base with intact string (the same as in Fig. 10) also lead to the development of
pass and gap bands as N increases (Fig. 16). The main difference to the previous case of damaged strings (α 6= 0) is that
with increasing ω a sole defect lets more and more part of wave energy to pass by (dashed curve). Conformably to the poles
allocation, the gap bands shrink with increasing ω instead of pass bands, so that almost no breaks for wave propagation
occur at high frequencies. As N increases, the poles also nestle up to the real axis and the downward excursions (dips) of
κ+(ω) become deeper and deeper, practically touching zero level with N = 20.

Thus, we have ascertained once again that resonance peaks of frequency characteristics indicate the presence of complex
poles ωn located very close to the real axis. Earlier this fact was observed for a 2D elastic strip waveguide with horizontal
cracks or inclusions as defects [22, 23]. Whereas the nearly real natural resonance frequencies ωn of a solitary crack
resulted in sharp narrow gaps in the κ+(ω) plots [9], narrow pass peaks appeared inside the gap band just at the resonance
frequencies ω ≈ Reωn with two [22] and more [23] obstacles. The number of such sub-peaks (and so the poles ωn) in each
pass-band group was N − 1, just the same as in the present string examples where the resonance pass effect also occurs at
ω ≈ Reωn. Taking into account that the location of pass bands on the frequency axis remains practically the same with
any N down to N = 2, we may estimate their localization analytically by analyzing the simplest characteristic equation
(28) for two defects. It is easily seen that{

cos 2k0a = 1 +O(ω−2)
sin 2k0a = O(ω−1) , as ω →∞.

It means

2k0a ∼ 2πn, ⇒ ωn =
√
c2 + (πn/a)2 +O(ω−1), as ω →∞, n = 1, 2, ... (30)

The diminishing addition in eq. (30) is, obviously, a complex value. The points ωn calculated using this asymptotics are
shown in Fig. 15 (subplot for N = 50) by circle marks. Their location indicates the left pass-band limits.

Since the two kinds of obstacles considered in the examples above differ by the screening properties of the related single
defects, one may conclude: if for one defect κ+(ω) → 0 as ω → ∞ (as in the first case α ≥ ε), then, as N increases, the
presence of nearly real poles results in sharp pass peaks in the transmission characteristics of a generally closed waveguide
at high frequencies. And vice versa, with large N the waveguide becomes generally open at large ω except small shrinking
gap bands, if with one defect κ+(ω)→ 1 as ω →∞.

It is reasonable to suppose that with increasing N the pass and stop bands become the same as for the string with an
infinite periodic set of defects. In accordance with the Bloch-Floquet theory, the wave propagation eigensolution for a
periodic structure is of the form

w(x, ω) = eiβxv(x, ω) (31)
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Fig. 14 Wave transmission through two-defect zones with the spacings a = 0.5, 1 and 2.

where v is a periodic function: v(x + a) = v(x), a is a space period of the structure, β is a wave number. The relation
between β and ω is specified by a certain characteristic equation ∆(β, ω) = 0 following from the governing equations
and boundary conditions for the periodic structure under consideration. The real roots of this equation ω = ωn(β) or
β = βn(ω) indicate the existence of propagating waves with the relative parameters ω and β, i.e. the pass bands; while the
non-existence of real roots for certain frequency ranges points out the corresponding gap bands.

The Bloch-Floquet characteristic equation for the string waveguide has been derived in the form

cos aβ = cos ak0 +
da

k0
sin ak0, d = c2ε− ω2α. (32)

Since | cos aβ| < 1 with real β, this equation may have real roots if and only if

| cos ak0 +
da

k0
sin ak0| < 1. (33)

In that way we have arrived at the condition controlling the existence of frequency pass bands in the periodically-defected
string. At high frequencies the bounds of the pass and stop ranges may be roughly estimated by taking into account the
asymptotic behavior

da

k0
∼
{
O(ω), α 6= 0
O(ω−1), α = 0 , as ω →∞.

With α 6= 0 it implies

| sin ak0| ∼ O(ω−1) ⇒ |ak0 + πn| < δn → 0, as ω →∞
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16 E. Glushkov, N. Glushkova, and J. Wauer: String with point-wise defects

Fig. 15 Wave transmission through systems of N equally spaced (a = 1) combined (α = ε = 0.5) defects for N = 2, 5, 20 and 50;
pass bands formation with large N and their contracting into pass frequencies with large ω.

or |ω − ωn| < O(δn), ωn =
√
c2 + (πn/a)2.

In other words the pass bands of small width O(δn) shrink to the frequencies ωn as ω →∞. This estimation is in complete
agreement with the pass band structure shown in Fig. 15 and with the two-defect estimation (30).

If α = 0, the inequality (33) permits almost all ω except that belonging to similar small ranges (gap bands) degenerating
into the stop-frequencies ωn just as in the case of base defects shown in Fig. 16.

The numerical evaluation of inequality (33) yields just the same pass-band intervals as ones formed with increased
number of obstacles in Figs. 15 and 16. It is worthy to note that the pass peaks of Fig. 15 are similar to ones for 1D resonant
transmission through a finite periodic layered structure (e.g. Fig. 2 from [19]), while the pass band formation shown in
Fig. 16, N = 20 is of qualitatively the same appearance as the transmission plots for phononic lattices presented in Figs. 5,
6 from [17].

6.3 Almost periodic obstacles

A natural question arises: how a slight disturbance of the defects’ periodicity might effect on the pass and gap bands
formation. The disturbance may be produced by different ways: by taking away one of defects, by inserting an extra one
into a periodic group, by the distance variation between two neighbor obstacles keeping the even spacing among the others.
One may also change αj and εj characteristics for one of equal defects, etc. Certainly, it is hardly possible to accomplish
more or less thorough analysis for all such effects at once. Figs. 17 – 22 just give some elementary examples.

First of all, based upon previous examples one may conclude that the step-intervals of transmission peaks for a set of
uniformly allocated obstacles depend only on their spacing a. Hence, a variation of their properties retaining the same
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Fig. 16 The same as in Fig. 15 in the case of intact string (α = 0) and defected elastic base (ε = 1); contracting gap bands.

Fig. 17 Wave transmission in the case of two different string
defects (compare Fig. 14).

Fig. 18 Wave transmission through 5 defects as in Fig. 15 but
with the changed properties α3 = ε3 = −0.5 of the middle
one.
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Fig. 19 Wave transmission through the periodic system of
spring defects as in Fig. 16 but with the only property devia-
tion ε4 = 5.

Fig. 20 Transmission through the system of defects as in
Fig. 15 for N = 5, but with the eliminated middle one (N = 4,
|x1 − x2| = |x3 − x4| = 1, |x2 − x3| = 2).

Fig. 21 Wave transmission through the quasi-periodic system
of the same spring defects as in Fig. 15 with the only changed
distance |x4 − x5| = 0.3.

Fig. 22 The same quasi-periodicity as for Fig. 21 but for the
spring defects as in Fig. 16.

location should not yield additional peaks or change the step of peak arising, although the height and shape of those peaks
can be considerably transformed. For example, instead of the uniformly repetitive full-pass frequencies filtering out by
two equal string defects, α1 = α2 = −0.5, ε = 0, a = 1 (Fig. 14), the change of the second-defect characteristics onto
α2 = 1.5 results in no more than 30% maximal wave transmission, but at the same central frequencies (Fig. 17). Similarly,
the plots of Figs. 18 - 19 for periodic defects with changed properties of the middle one demonstrate essential deformation
of the peaks’ shape retaining the same pass and gap bands as with the reference periodic sets given in Fig. 15 and Fig. 16,
respectively.

The effect of slight distance irregularity is illustrated by Figs. 20 - 22. Since the frequency step is inversely proportional
to the spacing a, the duplicate distance |x2 − x3| = 2 in the example of Fig. 20 results in additional small peaks appearing
between the every two main ones. Not to mention that the poles ωn appear under the small peak frequencies, as well.
Conformably, the reduced distance |x4 − x5| = 0.3 leads to additional peaks arising with the enlarged frequency step
∆ω ≈ π/0.3. In Fig. 21 they are visible at ω ≈ 3 and 12, while in Fig. 22 they are distinguishable at ω ≈ 7 and 16.

The results obtained are in accordance with the consideration [26] that the photonics-based devices (e.g. frequency
filters) do not exhibit in real non-ideal conditions so nice properties as it was expected from the calculations for ideally
periodic photonic crystals.
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7 Conclusion

A semi-analytical approach to wave propagation and diffraction analysis of one-dimensional elastic waveguides with point-
wise defects has been presented. It proved to be a convenient tool providing an insight into fine wave phenomena such as
resonance trapped-mode, gap-band and pass-band effects and their connection with the spectral properties of a defected
structure. In particular, it has been ascertained that the location of spectral points of the problem in the complex fre-
quency plane controls the wave transmission through the defected zone. The mechanism of pass-band formation inside a
wider gap-band due to the concentration of complex spectral points near the real axis at certain frequency ranges has been
demonstrated. As the number of identical evenly spaced defects increases, the pass and gap bands become the same as
that obtained within the Bloch-Floquet theory. It is also shown that a slight disturbance of the defect’s periodicity may
considerably change the stop and transmission properties.
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