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Abstract

 

—As applied to one-dimensional singularly perturbed problems, methods based on local
Green’s functions exhibit fast convergence and numerical stability even if the problems involve sharp
boundary layers. However, such methods virtually were not applied to problems in two or more space
variables, since local Green’s functions cannot be derived in a closed analytical form in these cases. In
the present paper two-dimensional convection–diffusion problems are used as an example to show high
efficiency of the Petrov–Galerkin discretization scheme in which the load Green’s functions are used as
projectors. The Green’s functions are constructed on the basis of semianalytical integral representations
proposed earlier. Asymptotic expansions of the Green’s functions are also derived. They remove the
existing limits of the practical applicability of the method with respect to the singularity parameter 

 

ε

 

tending to zero. Test comparisons and numerical examples for an inhomogeneous convection field dem-
onstrate numerical stability of the solutions with minimal costs, which stabilize as 

 

ε  

 

0

 

.
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1. INTRODUCTION

The convection–diffusion equation

 

(1.1)

 

describes the steady transport of particles by a convective velocity field 

 

b

 

(

 

x

 

) 

 

in the presence of weak diffu-
sion (

 

ε

 

/

 

|

 

b

 

|

 

 

 

�

 

 1

 

) and is a classical example of equations with a small parameter multiplying the highest deriv-
atives. Boundary value problems for such equations are known to be singularly perturbed and their solutions
can involve boundary and interior layers with steep gradients (on the order of 

 

O

 

(1/

 

ε

 

)

 

) [1, 2].
For example, in the Dirichlet problem with the boundary conditions

 

(1.2)

 

a boundary layer is formed near the boundary section 

 

Γ

 

–

 

 toward which a flux of particles is transported by
the field 

 

b

 

. Here, 
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 is the outward normal to 
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. As 
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  0

 

, the
convection term 

 

b

 

 · 
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u 

 

becomes dominating but the convective (degenerate) solution 

 

u

 

0

 

 satisfying Eq. (1.1)
with 

 

ε

 

 = 0 

 

and the boundary conditions specified on 

 

Γ

 

+

 

 does not generally satisfy the condition on 

 

Γ

 

–

 

. This
condition is fulfilled only if we take into account the diffusion term 

 

–

 

ε∆

 

u

 

, in which case a boundary-layer
solution arises in an 

 

O

 

(

 

ε

 

) 

 

neighborhood of 

 

Γ

 

–

 

.
Interior layers in the solution of problem (1.1), (1.2) are formed, for example, along the discontinuity

lines (or surfaces for 

 

n

 

 = 3) of 

 

u

 

0

 

, which issue from the points (or lines) 

 

x

 

i

 

 ∈ Γ

 

+

 

 at which 

 

p

 

(

 

x

 

) 

 

(

 

x

 

 ∈ ∂Ω

 

) has
jump discontinuities. In 

 

u

 

(

 

x

 

)

 

, these discontinuities are smoothed by diffusion. However, when 

 

ε

 

 is small, an
abrupt change in function values still occurs in their neighborhoods. The mechanism of instability that arises
in traditional numerical methods due to boundary and interior layers has been well studied up to this day.
Various approaches have been developed to cope with this difficulty. They include both adaptive grid refine-
ment, i.e., a decrease in the local Peclet number 

 

h

 

Pe
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/(2
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(where 

 

h

 

 is the characteristic size of the grid
cell and Pe

 

 = 

 

max
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b

 

|

 

/2
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) [3–6], and explicit allowance for the solution’s boundary-layer structure by choos-
ing basis functions similar in form to those in [7, 8] or by choosing characteristic directions similar to those
in [9]. Meshless methods (in particular, the Petrov–Galerkin local scheme [10]) are becoming highly popu-
lar at present. The local Green’s function method described here is a version of the Petrov–Galerkin scheme
with specially chosen test functions (projectors) that take into account the structure of the solution. The
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basic idea of the method has been known for a long time, and it can be illustrated well by the following heu-
ristic considerations.

Let us consider a variational statement of the Dirichlet problem for an operator equation 

 

�

 

u

 

 = 

 

f

 

. The
weak solution of the problem is an element 

 

u

 

 ∈ 

 

U

 

 satisfying

 

(1.3)

 

Here, 

 

U

 

 and 

 

V

 

 are Hilbert spaces of functions satisfying boundary condition (1.2) for 

 

U

 

 and the homoge-
neous condition 

 

v

 

|

 

Γ

 

 = 0 

 

for 

 

V

 

.
For Eq. (1.1), the bilinear functional in (1.3) is usually reduced through integration by parts to the form

 

(1.4)

 

and 

 

U

 

 and V are defined as the closures of spaces of continuous functions with respect to the L2 norm. Here
and below,

Let UN ⊂ U and VN ⊂ V be the linear spans of systems of bases functions  and  in U and
V, respectively. Then, according to the Petrov–Galerkin scheme, an approximate weak solution of the prob-
lem in question is an element

(1.5)

that satisfies the N variational conditions

(1.6)

These conditions give a linear algebraic system

(1.7)

for the unknown coefficient vector c = (c1, …, cN)Ú. The elements aij = (�ϕj, ψi) of the system matrix and
the components fi = (f, ψi) of the right-hand-side vector are expressed in terms of the basis functions chosen.

To ensure the norm of residual tending to zero as N  ∞, the system of projectors  must be an
ultimate dense set in the Hilbert space under consideration [11].

It is well known that the traditional Galerkin scheme with ψi = ϕi gives good results for boundary value
problems of the elliptic type [12]. However, in the case of a singular perturbation, the boundary layers give
rise to spurious oscillations in the approximate solution, which rapidly spread to the entire domain as ε
decreases. As a result, the method becomes inapplicable even with modest Peclet numbers.

Numerical stability (i.e., the method’s convergence independent of ε) can be achieved through a special
choice of the form of ψi. Ideally, ψi are defined as the local Green’s functions of the adjoint problem. Indeed,
by using the adjoint operator �* : (�u, v) = (u, �*v), variational equality (1.6) can be written as

(1.8)

Let ψi be specified by a shape function ψ defined at the nodes xi of a grid covering Ω : ψi(x) = ψ(x – xi),
i = 1, 2, …, N. If ψ is a fundamental solution of the adjoint equation

(1.9)

where δ(x) is Dirac’s delta function, then (1.8) implies that the approximate solution coincides with the
exact one at the grid points:

(1.10)

In other words, the use of the Green’s functions for the adjoint operator as projectors is equivalent to find-
ing the exact solution of the original problem in a grid norm. As a rule, however, the solution to problem
(1.9) cannot be obtained explicitly, for example, for an arbitrary inhomogeneity of the field b(x). In [13],

�u v,( ) f v,( ) v V .∈∀=
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the shape function ψ(x) was defined as a fundamental solution of an operator  that approximates �* in a
small neighborhood Ωh of zero. Preliminary results have shown that the ε-independent convergence of uN

to u at the nodes xi also holds in this case.

2. LOCAL GREEN’S FUNCTIONS

Consider problem (1.9) in �
2
 : x = (x, y). For simplicity, let xi be the nodes of a rectangular grid covering

Ω with a uniform mesh size h, and let the basis functions be conventionally defined as

which ensures a piecewise linear approximation of the exact solution.

According to (1.5), � is approximated by the sum of the operators �j defined on Ωj : |x – xj| < h, |y – yj| <
h and having constant coefficients bj = b(xj) and cj = c(xj). For constructing ψ, the following problem natu-
rally arises on the elementary cell Ωh : |x | < h, |y | < h:

(2.1)

Here, ψ ≡ –ε∆ψ – b · ∇ψ + cψ is the adjoint differential operator arising in integration by parts in (1.4):

(2.2)

x(t) ∈ Γh is the current point on the boundary of Ωh, and t ∈ [0, 8h] is a parameter defining the location of

x on Γh. The coefficients ε, b, and c in  are the constants equal to the values of the corresponding functions
at xi. The index i in (2.1) and (2.2) is omitted for simplicity, but it should be kept in mind that, in the case

of variable coefficients, the operators  and, accordingly, the shape functions ψ defined by problem (2.1)
are generally different for different ψi.

Note that the operator of problem (2.1) is not adjoint even for approximating operators �j with constant

coefficients, since (�u, ψ) ≠ (u, ψ) because of the integral over ∂Ωh on the right-hand side of (2.2). Thus,
even an exact solution of this problem does not give an exact solution at grid points in the sense of (1.9) and

(1.10). However,  retains the basic features of an adjoint operator; therefore, we can expect that the solu-
tion of problem (2.1) preserves the properties that ensure the numerical stability of the Petrov–Galerkin
scheme as ε  0.

The functions ψi defined by solutions to problem (2.1) are called the local Green’s functions of the

adjoint equation, unlike the global Green’s function (or a fundamental solution) g(x) satisfying g = δ(x)

in the whole space �
d
. For the two-dimensional problem (d = 2), the functions g(x) can be written explicitly

in terms of the modified Bessel function K0, which has an expected logarithmic singularity at x  0.

In [13], ψ was represented in terms of g and a contour integral of the unknown normal derivative ∂ψ/∂n
on the boundary:

(2.3)

Here, v(t) = ε∂ψ(x)/∂n|x = x(t). Next, v(t) was determined from an integral equation arising when the condi-
tion  = 0 is satisfied.

Replacing v in (1.6) by a function ψi of form (2.3) defined at xi gives the elements aij (j = 1, 2, …, N) of
the ith row in the matrix of system (1.7). They are expressed in terms of the third-order matrix stencils B =
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[b(p1, p2)] (p1, p2 = –1, 0, 1) according to the rule

Using the notation of [13], we have

(2.4)

(2.5)

where  = ε∂u/∂x|x = ±h and  = ε∂u/∂y|y = ±h are the values of the unknown function ±v(t) on the corre-
sponding sides of the square cell Ωh (in the local coordinates x and y with the origin at the node xi). Note

that, when |xi – xj | ≥ 2h or |yi – yj | ≥ 2h, the supports of ψi and ϕj do not intersect; i.e., ,  ≡ 0. Conse-
quently, aij = 0 for i and j such that |p1| ≥ 2 or |p2| ≥ 2.

Thus, when we use (2.3), the stencil B of the matrix A of system (1.7) can be expressed in terms of inte-
grals of v(t). As a result, the function ψ(x) itself does not actually need to be constructed. The analysis per-
formed in [13] showed that the stencil thus constructed gives a matrix A that possesses the properties of M
matrix [15], which ensure that the Gauss–Seidel solution of system (1.7) converges rapidly. Moreover, the
elements of the stencil stabilize as ε  0. As a result, the node convergence

holds in the presence of the boundary and interior layers.

However, for high values of the local Peclet number, starting with h  Pe ≈ 105÷107, the computational
costs associated with finding v(t) and constructing the matrix of system (1.7) were found to increase
abruptly, although the method kept exhibiting stable convergence. This limitation of the method can be over-
come by using an asymptotic representation of ψ(x) as ε  0 (Pe  ∞).

3. ASYMPTOTICS OF LOCAL GREEN’S FUNCTIONS

In addition to (2.3), an explicit representation of the solution of problem (2.1) can be derived (by sepa-

ration of variables) in the form of a double series in the eigenfunctions  :  = λmn  of the differ-

ential operator  on Ωh:

(3.1)

In the case under consideration,

(3.2)

The eigenfunctions umn of the original operator � are obtained from (3.2) by replacing –bi with bi in the
exponentials with the eigenvalues λmn remaining the same. Since the eigenfunctions umn and  are bior-
thogonal, i.e.,

aij b p1 p2,( )= , p1 xi x j–( )/h, p2 yi y j–( )/h.= =
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the expansion coefficients fmn can easily be derived in the explicit form:

It should be noted that, although (3.1) is given in a closed analytical form, its direct use in the computa-
tions is not profitable, since the convergence of the series is ensured only by the quadratic growth of the
eigenvalues involved in the denominator: λmn ~ O(m2 + n2) as m2 + n2  ∞; however, for ε/h � 1, the coef-
ficient εh of (m2 + n2) sharply reduces this growth. The computational costs become even greater when we
sum the series for v(t), whose convergence is one order of magnitude slower.

On the other hand, series (3.1) can be transformed into a form convenient for deriving asymptotics. First,

it is obvious that fmn ≡ 0 for even indices. Next, for (y) and (x) involved in the stencil, the double series
is reduced to a singlefold one if we use formula 5.1.26.7 from [16]:

As a result,

(3.3)

where sk is given in (3.2).
The series R(ξ) still converges slowly for ε/h � 1. To construct its asymptotics as ε  0, we use the

Poisson formula [17]:

which yields the representation

(3.4)

where

Each of the functions  has a single saddle point of minimum height :

According to the steepest descent method, their contribution to the asymptotics of  is given by
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Here,  = (ξ, ) =  and  = ∂2 /∂  = .

A comparative analysis of the functions (ξ), which determine the order of the exponential decay,
shows that, for ξ ∈ [–h, h], a major contribution to R(ξ) is made by four terms of the series with n = –2, –1,
0, 1. Compared with them, the contribution made by the other terms is exponentially small. Thus, as ε 
0, we do not need to solve integral equations or sum series in order to determine v(t), while the integration
of explicit asymptotic representations in (2.5) does not require considerable computational costs.

As an illustration, the table presents the numerical results for the example considered in [13] for the
square domain 0 ≤ x, y ≤ 1 with the right-hand side f corresponding to the exact solution

and with boundary layers developing near the outlet edges x = 1 and y = 1; b = (bcosθ, bsinθ), θ = π/8, c =
1, the mesh size is h = 0.01, and N = 100 × 100 = 104. For various ε, the table lists the average error

and the total computation time (in seconds) taken on a 733 MHz computer. The columns denoted by I list
the results of [13] obtained by solving integral equations to determine v; the columns denoted by II corre-
spond to v defined by series (3.3) (for ε = 10–3) or by asymptotics (3.4) (for ε ≤ 10–5). In both cases, f(x, y)
is approximated on a given grid by a piecewise constant function, which introduces an additional error. For
this reason, columns III list the results obtained also by using (3.3) and (3.4), but through calculating the
components fi(f, ψi) of the right-hand side by numerical integration instead of the piecewise approximation.
The table shows that the use of asymptotics considerably reduces the computational costs while the accu-
racy remains the same. When fi is found through integration, the accuracy improves by one order of magni-
tude but the computational costs again increase. In this case, however, they also do not increase sharply and
stabilize as ε  0 as in the case of the error.

It should be noted that most of the computational time is required for constructing the matrix (stencil)
and the right-hand side of system (1.7), while its solution itself usually requires only a few iterations of the
Gauss–Seidel method (in the example considered above, Nit = 9 in case I and Nit = 2 in cases II and III for
ε ≤ 10–5).

4. INTERIOR LAYERS, CURVED BOUNDARIES, AND INHOMOGENEOUS FIELDS
In the example considered above, when ε is small, no nodes are located within the boundary layers. For

this reason, it may seem that the method proposed produces only a degenerate solution u0 not satisfying all
the boundary conditions. Examples of solutions to problems with interior layers show that this is not the
case: the method yields a nodal approximation to the full solution u(x) with steep gradients in layers.

For example, Fig. 1 shows the solution of the problem for homogenous equation (1.1) (with f ≡ 0) and
discontinuous boundary conditions (1.2): p = 1 on a part of the boundary Γ+ (x = 0, 0.25 ≤ y ≤ 0.5), and p = 0
on the remaining Γ; ε = 10–7, b = c = 1, θ = π/8, h = 0.02, N = 2500, and t = 1 s.

In the solution of this problem, two interior layers are formed extending from the discontinuity points of
the boundary conditions along the lines defined by the convective flux b and a boundary layer is formed on

Sn 0,
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± tn
± d pn

±/ 2π2( ) Sn 2,
± Sn

± t2
t tn

±= 2 pn
±/ dπ2( ) pn

±

Sn 0,
±

u x y,( ) x2y2 1 e1 x( )–[ ] 1 e2 y( )–[ ], en xn( ) 1 xn–( )/ε–[ ], nexp 1 2,,= = =

rh N 1– u xi( ) ci– u uN– Ωd

Ω
∫∫≈

i 1=

N

∑=

Table

ε

Columns

I II III

rh t rh t rh t

10–3 0.0021 2 0.0021 2 0.00047 132

10–5 0.0030 7 0.0030 <1 0.00018 58

10–7 0.0025 43 0.0025 <1 0.00020 56

10–9 0.0025 116 0.0025 <1 0.00020 54
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the right boundary x = 1, 0 ≤ y ≤ 1. As should be expected, away from discontinuity points, the interior layers
are gradually smoothed due to diffusion. Despite the sharp change in u(xi) at the nodes lying on the different
sides of the layers, the numerical solution is stable for any ε � 1.

The low computational costs required by the method also make it possible to rapidly obtain results for
equations with variable coefficients, when the functions ψi have to be generally constructed for each of the
N nodes xi. As an example, Fig. 2 shows the field b(x) = (1.5sinϕ, –0.5cosϕ), where ϕ is the polar angle of
the point (x, y) in coordinates with the origin at x0 = (0, 0.5), and the plot of the corresponding solution uN

obtained with f ≡ 0 and p ≠ 0 only on the interval x = 0, 0.8 ≤ y ≤ 1, ε = 10–9, c = 1, N = 2500, Nit = 85, and
t = 118 s.

In the examples considered, Ω is exactly partitioned into subdomains Ωi by a square grid. For domains
with curved boundaries, the use of bases ϕi and ψj with square or rectangular elementary cells actually
means that Ω is approximated by a domain with a steplike boundary. However, the nodal convergence of the
numerical solution uN to the exact solution u as h  0 is also retained in this case. As an illustration, we
consider Hemker’s example [18] for a domain with a circular hole Ωc : x2 + y2 ≤ 1 and with the horizontal
convective flux b = (1, 0). Equation (1.1) is homogeneous (f ≡ 0), and the Dirichlet conditions  = 1 are

set on the hole’s boundary Γc = ∂Ωc.

For the whole space with the circle Ω = �
2
\ Ωc cut out, the solution u(x, y) is exactly constructed in the

form of a series in cylinder functions. This solution describes the transport of particles from the source (the

boundary Γc) along the semiinfinite strip ||y| < 1, x >  with interior layers formed at the strip’s bound-

ary y = ±1, x > 0. In the numerical solution, the space �
2
 was restricted by the rectangle –3 ≤ x ≤ 13, |y| < 6

with the homogeneous Dirichlet conditions u = 0 set on the left and horizontal sides and with the Neumann
condition  = 0 set on the right boundary Γ+ : x = 13, |y| < 6. The latter condition prevented the formation

of a boundary layer, which is absent in the exact solution.
Figure 3 shows the plot of uN(x, y) obtained for the same parameters as in [18] (ε = 0.2, c = 0) with the

mesh size h = 0.2. Although Γc is approximated quite roughly for this h, the resulting solution agrees well
with the exact one. This can be seen when the numerical solution is compared with the exact solution along
the cross sections at x = 1.4 and x = 11, |y| < 6, i.e., near the source and far from it (Fig. 4).

Since the series describing the exact solution converge poorly for small ε, the comparison shown in Fig. 4
corresponds to ε = 0.04. The stars indicate the values obtained for h = 0.2 (N = 4872, Nit = 46, t = 4 s) and
the circles correspond to h = 0.1 (N = 19204, Nit = 136, t = 10 s). It can be seen that, even in the zone of
layers, the values of uN(xi) steadily approach the exact solution as h decreases, despite the steplike approx-
imation of Γc.
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Remark. When constructing ψi, we can use as Ωh not only 2h × 2h squares but also differently shaped
cells, for example, circles x2 + y2 ≤ h2. In this case, the form of the matrix stencil B changes and even the
straight line segments of Γ become approximated. However, as in the example considered above, this cir-
cumstance does not degrade the general convergence as h  0. At the same time, the use of circular cells
reduces the computational costs, because, for a variable field b = (bcosθ, bsinθ) and c = const, the functions
ψi actually depend only on b and, for different θ, they are transformed into each other by rotations through
suitable angles.

The mechanism of convergence can be better understood by taking into account the following property
of the normal derivative ∂ψ/∂n on the boundary of Ωh.
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Lemma. Let t0 be the coordinate of the point x0 = x(t0) ∈ Γh at which the field line of b passing through
the center of Ωh intersects the boundary. The function v(t) = ε∂ψ/∂n is maximal at this point and decays
exponentially outside its vicinity as ε/h  0 so that v(t) converges to –qδ(t – t0), where q =
exp[−ch/max(|b1|, |b2|)] is independent of ε and δ is Dirac’s delta function.

The proof follows from a direct calculation of the limit of the integral (t)v(t)dt with an arbitrary

continuous function f(t) using the representations and asymptotics derived for v(t).
Returning to (1.8)–(1.10), we obtain, instead of (1.10), the condition

as ε/h  0, which does not contradict the nodal convergence uN(xi)  u(xi) when c > 0 and q < 1. The
latter condition is also a necessary condition for stencil (2.4) to give an M matrix in which the row sum of
the absolute values of all the off-diagonal elements must be less than the diagonal unit.

5. CONCLUSION

A two-dimensional boundary value problem for the convection–diffusion equation was used to demon-
strate the high efficiency of the local Green’s function method as applied to singularly perturbed problems.
A grid discretization based on local Green’s functions yields a system of algebraic equations with a sparse
M matrix, which can be solved by iterative methods. The convergence rate of the iterative solution becomes
even higher when ε decreases; i.e., the method is more efficient when the singular perturbation is more
severe. In our view, no fundamental difficulty should arise in implementing the method in the case of three
variables.
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